The Herb-Drug Pharmacokinetic Interaction of 5-Fluorouracil and Its Metabolite 5-Fluoro-5,6-Dihydrouracil with a Traditional Chinese Medicine in Rats


Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT) is the most common traditional formula given to colorectal and breast cancer patients in Taiwan, according to a statistical study of the National Health Insurance Research Database. 5-Fluorouracil (5-FU) is widely used as the first line of treatment for colorectal cancer. Thus, the aim of study is to investigate the pharmacokinetic interaction of XSLJZT and 5-FU.


To investigate the herb-drug interaction of XSLJZT with 5-FU as well as its metabolite 5-fluoro-5,6-dihydrouracil (5-FDHU) using pharmacokinetics, a high-performance liquid chromatography (HPLC) system coupled with a photodiode array detector was developed to monitor 5-FU and 5-FDHU levels in rat blood. Rats were divided into three cohorts, one of which was administered 5-FU (100 mg/kg, iv-intravenous) alone, while the other two groups were pretreated with low and high doses of XSLJZT (600 mg/kg/day or 2400 mg/kg/day for 5 consecutive days) in combination with 5-FU.


The results demonstrated that 5-FU level was not significantly different between the group treated with only 5-FU and the group pretreated with a normal dose of XSLJZT (600 mg/kg/day). However, pharmacokinetic analysis revealed that pretreatment with a high dose of XSLJZT (2400 mg/kg/day) extended the residence time and increased the volume of distribution of 5-FU. No significant distinctions were found in 5-FDHU pharmacokinetic parameters at three doses of XSLJZT.


Overall, the pharmacokinetic results confirm the safety of coadministering 5-FU with XSLJZT, and provide practical dosage information for clinical practice.

Related Products

Cat.No. Product Name Information
S1209 Fluorouracil (5-Fluorouracil, 5-FU) Fluorouracil (5-Fluorouracil, 5-FU, NSC 19893) is a DNA/RNA synthesis inhibitor, which interrupts nucleotide synthetic by inhibiting thymidylate synthase (TS) in tumor cells. Fluorouracil induces apoptosis and can be used in the treatment of HIV.

Related Targets

DNA/RNA Synthesis