Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice


Ionizing radiation (IR)-induced pulmonary fibrosis (PF) is an irreversible and severe late effect of thoracic radiation therapy. The goal of this study was to determine whether clearance of senescent cells with ABT-263, a senolytic drug that can selectively kill senescent cells, can reverse PF.


C57BL/6J mice were exposed to a single dose of 17 Gy on the right side of the thorax. Sixteen weeks after IR, they were treated with 2 cycles of vehicle or ABT-263 (50 mg/kg per day for 5 days per cycle) by gavage. The effects of ABT-263 on IR-induced increases in senescent cells; elevation in the expression of selective inflammatory cytokines, matrix metalloproteinases, and tissue inhibitors of matrix metalloproteinases; and the severity of the tissue injury and fibrosis in the irradiated lungs were evaluated 3 weeks after the last treatment, in comparison with the changes observed in the irradiated lungs before treatment or after vehicle treatment.


At 16 weeks after exposure of C57BL/6 mice to a single dose of 17 Gy, thoracic irradiation resulted in persistent PF associated with a significant increase in senescent cells. Treatment of the irradiated mice with ABT-263 after persistent PF had developed reduced senescent cells and reversed the disease.


To our knowledge, this is the first study to demonstrate that PF can be reversed by a senolytic drug such as ABT-263 after it becomes a progressive disease. Therefore, ABT-263 has the potential to be developed as a new treatment for PF.

Related Products

Cat.No. Product Name Information
S1001 Navitoclax (ABT-263) Navitoclax (ABT-263) is a potent inhibitor of Bcl-xL, Bcl-2 and Bcl-w with Ki of ≤ 0.5 nM, ≤1 nM and ≤1 nM in cell-free assays, but binds more weakly to Mcl-1 and A1. Phase 2.

Related Targets