Category

Archives

Hydroxysafflor yellow A inhibited lipopolysaccharide-induced non-small cell lung cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT/mTOR and ERK/MAPK signaling pathways

BACKGROUND:

Chronic inflammation plays a significant role in the occurrence and development of non-small cell lung cancer (NSCLC). Hydroxysafflor yellow A (HSYA), a chemical compound of the yellow color pigments extracted from the safflower, has been widely used in clinical treatment with positive antioxidation, anti-inflammation, and antitumor effects. However, the role and underlying mechanisms of HYSA on development and progress in inflammation-mediated NSCLC are unknown.

METHODS:

Cell counting kit-8, colony formation, EdU, cell apoptosis, wound healing, Transwell migration and invasion, and enzyme-linked immunosorbent assays; flow cytometry; and Western blotting were conducted using human NSCLC cell lines A549 and H1299.

RESULTS:

Lipopolysaccharide (LPS) significantly promoted the proliferation and enhanced colony formation of A549 and H1299 cells, while HYSA notably reversed the effects of LPS. HYSA induced apoptosis of LPS-mediated A549 and H1299 cells in a dose dependent manner; and remarkably suppressed migration, invasion, and epithelial-mesenchymal transition (EMT), significantly regulated production of LPS-induced inflammation cytokines, and downregulated protein expression of PI3K/Akt/mTOR and ERK/MAPK signaling pathways in LPS-induced A549 and H1299 cells. Furthermore, PI3K (LY294002) and ERK (SCH772984) inhibitors remarkably inhibited proliferation, migration, invasion, and EMT, and induced apoptosis in LPS-mediated A549 and H1299 cells. These effects were even more obvious in the presence of HYSA and LY294002 or SCH772984 compared to those of either agent alone.

CONCLUSION:

HYSA suppressed LPS-mediated proliferation, migration, invasion, and EMT in A549 and H1299 cells by inhibiting the PI3K/Akt/mTOR and ERK/MAPK signaling pathways, indicating that HYSA may be a potential candidate to treat inflammation-mediated NSCLC.

Related Products

Cat.No. Product Name Information Publications Customer Product Validation
S7048 Talazoparib (BMN 673) Talazoparib (BMN 673, LT-673) is a novel PARP inhibitor with IC50 of 0.57 nM for PARP1 in a cell-free assay. It is also a potent inhibitor of PARP-2, but does not inhibit PARG and is highly sensitive to PTEN mutation. Phase 3. (149) (6)

Related Targets