Category

Archives

HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells

Metabolic homeostasis is achieved through balanced energy storage and output. Impairment of energy expenditure is a hallmark event in patients with obesity and type 2 diabetes. Previously we have shown that the pro-inflammatory cytokine interferon gamma (IFN-γ) disrupts energy expenditure in skeletal muscle cells via hypermethylated in cancer 1 (HIC1)-class II transactivator (CIITA) dependent repression of SIRT1 transcription. Here we report that repression of SIRT1 transcription by IFN-γ paralleled loss of histone acetylation on the SIRT1 promoter region with simultaneous recruitment of histone deacetylase 4 (HDAC4). IFN-γ activated HDAC4 in vitro and in vivo by up-regulating its expression and stimulating its nuclear accumulation. HIC1 and CIITA recruited HDAC4 to the SIRT1 promoter and cooperated with HDAC4 to repress SIRT1 transcription. HDAC4 depletion by small interfering RNA or pharmaceutical inhibition normalized histone acetylation on the SIRT1 promoter and restored SIRT1 expression in the presence of IFN-γ. Over-expression of HDAC4 suppressed the transcription of genes involved in energy expenditure in a SIRT1-dependent manner. In contrast, HDAC4 knockdown/inhibition neutralized the effect of IFN-γ on cellular metabolism by normalizing SIRT1 expression. Therefore, our data reveal a role for HDAC4 in regulating cellular energy output and as such provide insights into rationalized design of novel anti-diabetic therapeutics.

Related Products

Cat.No. Product Name Information Publications Customer Product Validation
S1396 Resveratrol (SRT501) Resveratrol (SRT501, trans-Resveratrol) has a wide spectrum of targets including cyclooxygenases(i.e. COX, IC50=1.1 μM), lipooxygenases(LOX, IC50=2.7 μM), kinases, sirtuins and other proteins. It has anti-cancer, anti-inflammatory, blood-sugar-lowering and other beneficial cardiovascular effects. Resveratrol induces mitophagy/autophagy and autophagy-dependent apoptosis. (40) (2)
S1541 Selisistat (EX 527) Selisistat (EX 527, SEN0014196) is a potent and selective SIRT1 inhibitor with IC50 of 38 nM in a cell-free assay, exhibits >200-fold selectivity against SIRT2 and SIRT3. Phase 2. (186) (5)
S1129 SRT1720 HCl SRT1720 HCl is a selective SIRT1 activator with EC50 of 0.16 μM in a cell-free assay, but is >230-fold less potent for SIRT2 and SIRT3. SRT1720 induces autophagy. (143) (6)
S1484 MC1568 MC1568 is a selective HDAC inhibitor for maize HD1-A with IC50 of 100 nM in a cell-free assay. It is 34-fold more selective for HD1-A than HD1-B. (41) (5)

Related Targets