GRP78 blockade overcomes intrinsic resistance to UBA1 inhibitor TAK-243 in glioblastoma

Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor of the central nervous system. Despite continuous progression in treatment options for GBM like surgery, radiotherapy, and chemotherapy, this disease still has a high rate of recurrence. The endoplasmic reticulum (ER) stress pathway is associated with chemotherapeutic drug resistance. The UBA1 inhibitor TAK-243 can induce strong ER stress. However, the sensitivity of TAK-243 varies greatly in different tumor cells. This study evaluated the antitumor effects of the GRP78 inhibitor, HA15, combined with TAK-243 on GBM in the preclinical models. HA15 synergistically enhanced the sensitivity of GBM cells to TAK-243. When compared with TAK-243 monotherapy, HA15 combined with TAK-243 significantly inhibited GBM cell proliferation. It also induced G2/M-phase arrest in the cell cycle. In vivo studies showed that HA15 combined with TAK-243 significantly inhibited the growth of intracranial GBM and prolonged survival of the tumor-bearing mice. Mechanistically, HA15 and TAK-243 synergistically activated the PERK/ATF4 and IRE1α/XBP1 signaling axes, thereby eventually activating PARP and the Caspase families, which induced cell apoptosis. Our data provided a new strategy for improving the sensitivity of GBM to TAK-243 treatment and experimental basis for further clinical trials to evaluate this combination therapy.

Related Products

Cat.No. Product Name Information
S8341 TAK-243 (MLN7243) TAK-243 (MLN7243) is a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE) with an IC50 of 1 ± 0.2 nM in the UBCH10 E2 thioester assay. It has minimal inhibitory activity in a panel of kinase and receptor assays, as well as on human carbonic anhydrase type I and type II. TAK-243 (MLN7243) induces ER stress, abrogates NFκB pathway activation and promotes apoptosis.

Related Targets

E1 Activating Apoptosis related NF-κB