Determination of Somatic Mutations and Tumor Mutation Burden in Plasma by CAPP-Seq during Afatinib Treatment in NSCLC Patients Resistance to Osimertinib

Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) were developed to target the EGFR T790M resistance mutation in non-small cell lung cancer (NSCLC) patients resistant to first- or second-generation EGFR-TKIs. To investigate the efficacy of afatinib treatment for EGFR T790M-positive NSCLC patients showing resistance to osimertinib and alterations in somatic mutations and tumor mutation burden (TMB) in plasma circulating tumor DNA (ctDNA) during afatinib treatment, we conducted a prospective study using Cancer Personalized Profiling by deep Sequencing (CAPP-Seq). Nine NSCLC patients with EGFR T790M mutation who showed resistance to third-generation EGFR-TKIs were enrolled in this study and treated with afatinib. Plasma samples were collected before treatment, 4 weeks after treatment, and at disease progression. The mutation profile and TMB in plasma ctDNA were analyzed by CAPP-Seq. The objective response rate and median progression-free survival associated with afatinib were 0% and 2.0 months, respectively. The C797S mutation-mediated resistance to osimertinib was observed in one patient and following afatinib treatment in two patients; the C797S mutations occurred in the same allele as the T790M mutation. After afatinib treatment, afatinib-sensitive mutant alleles, such as ERBB2, and TMB decreased. We have demonstrated that detection of mutant allele frequency and TMB of ctDNA by CAPP-Seq could help determine the effectiveness of and resistance to afatinib. Although afatinib monotherapy for T790M-positive NSCLC resistant to osimertinib was less effective, the action for multiclonal mutant alleles and TMB might contribute to further treatment strategy.


Related Products

Cat.No. Product Name Information Publications Customer Product Validation
S1011 Afatinib (BIBW2992) Afatinib (BIBW2992) inhibits EGFR/ErbB irreversibly in vitro with IC50 of 0.5, 0.4, 10, 14, 1 nM for EGFRwt, EGFR L858R , EGFR L858R/T790M ErbB2 (HER2) and ErbB4 (HER4), respectively. Afatinib induces autophagy. (294) (5)

Related Targets