Category

Archives

Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice

It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. 

Related Products

Cat.No. Product Name Information
S1378 Ruxolitinib Ruxolitinib is the first potent, selective, JAK1/2 inhibitor to enter the clinic with IC50 of 3.3 nM/2.8 nM in cell-free assays, >130-fold selectivity for JAK1/2 versus JAK3. Ruxolitinib kills tumor cells through toxic mitophagy. Ruxolitinib induces autophagy and enhances apoptosis.

Related Targets

JAK