A Novel Role for the Regulatory Nod-Like Receptor NLRP12 in Anti-Dengue Virus Response

Dengue Virus (DENV) infection can cause severe illness such as highly fatality dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Innate immune activation by Nod-like receptors (NLRs) is a critical part of host defense against viral infection. Here, we revealed a key mechanism of NLRP12-mediated regulation in DENV infection. Firstly, NLRP12 expression was inhibited in human macrophage following DENV or other flaviviruses (JEV, YFV, ZIKV) infection. Positive regulatory domain 1 (PRDM1) was induced by DENV or poly(I:C) and suppressed NLRP12 expression, which was dependent on TBK-1/IRF3 and NF-κB signaling pathways. Moreover, NLRP12 inhibited DENV and other flaviviruses (JEV, YFV, ZIKV) replication, which relied on the well-conserved nucleotide binding structures of its NACHT domain. Furthermore, NLRP12 could interact with heat shock protein 90 (HSP90) dependent on its Walker A and Walker B sites. In addition, NLRP12 enhanced the production of type I IFNs (IFN-α/β) and interferon-stimulated genes (ISGs), including IFITM3, TRAIL and Viperin. Inhibition of HSP90 with 17-DMAG impaired the upregulation of type I IFNs and ISGs induced by NLRP12. Taken together, we demonstrated a novel mechanism that NLRP12 exerted anti-viral properties in DENV and other flaviviruses (JEV, YFV, ZIKV) infection, which brings up a potential target for the treatment of DENV infection.

Related Products

Cat.No. Product Name Information
S1142 Alvespimycin (17-DMAG) HCl Alvespimycin (17-DMAG, NSC 707545, BMS 826476, KOS 1022) HCl is a potent HSP90 inhibitor with IC50 of 62 nM in a cell-free assay. Phase 2.

Related Targets