5-FU therapeutic drug monitoring as a valuable option to reduce toxicity in patients with gastrointestinal cancer


5-FU is used as the main backbone of chemotherapy regimens for patients with colorectal and other gastrointestinal cancers. Despite development of new strategies that allowed enhancing clinical effectiveness and tolerability of 5-FU, 10-30% of patients treated with 5-FU-based regimens experience severe treatment-related toxicity. In our study, we evaluated the 5-FU exposure-toxicity relationship and investigated the efficacy of PK-guided dosing in increasing tolerability of 5-FU-based chemotherapy.


50.7% of patients required dose adjustments after cycle 1. Percentage of patients within 5-FU AUC range was 49.3%, 66.9%, 61.0% at cycle 1, 2 and 3 respectively (p = 0.002 cycle 1 vs cycle 2). At all 3 cycles, lower incidences of grade I/II toxicities were observed for patients below or within range compared with those above range (19.4% vs 41.3%, p < 0.001 respectively).


Our analysis confirms that the use of BSA-guided dosing results in highly variable 5-FU exposure and strongly suggests that PK-guided dosing can improve tolerability of 5-FU based chemotherapy in patients with gastrointestinal cancers, thus supporting 5-FUtherapeutic drug monitoring.


155 patients with gastrointestinal cancers, who were to receive 5-FU-based regimens were included in our study. At cycle 1, the 5-FU dose was calculated using patient's Body Surface Area (BSA) method. A blood sample was drawn on Day 2 to measure 5-FUconcentration. At cycle 2, the 5-FU dose was adjusted using a PK-guided dosing strategy targeting a plasma AUC range of 18-28 mg·h/L, based on cycle 1 concentration. Assessments of toxicity was performed at the beginning of every cycle.

Related Products

Cat.No. Product Name Information
S1209 Fluorouracil (5-Fluorouracil, 5-FU) Fluorouracil (5-Fluorouracil, 5-FU, NSC 19893) is a DNA/RNA synthesis inhibitor, which interrupts nucleotide synthetic by inhibiting thymidylate synthase (TS) in tumor cells. Fluorouracil induces apoptosis and can be used in the treatment of HIV.

Related Targets

DNA/RNA Synthesis