Category
- PI3K/Akt/mTOR
- Epigenetics
- Methylation
- Immunology & Inflammation
- Protein Tyrosine Kinase
- Angiogenesis
- Apoptosis
- Autophagy
- ER stress & UPR
- JAK/STAT
- MAPK
- Cytoskeletal Signaling
- Cell Cycle
- TGF-beta/Smad
- DNA Damage/DNA Repair
- Stem Cells & Wnt
- Hippo
- Ubiquitin
- Neuronal Signaling
- NF-κB
- GPCR & G Protein
- Endocrinology & Hormones
- Transmembrane Transporters
- Metabolism
- Proteases
- Microbiology
- Others
Archives
Robust and stimuli-responsive POSS hybrid PDMAEMA hydrogels for controlled drug release
A new polyhedral oligomeric silsesquioxane (POSS) hybrid hydrogels were desinged and fabricated by introducing cationic octa-ammonium (Oa)-POSS) into chemically cross-linked cationic PDMAEMA hydrogels via in situ radical freezing polymerization. The prepared gels (shorten as OP-PD gels) show considerably improved properties through the effective incorporation and dispersion of Oa-POSS particles in gels. Comparing to the Oa-POSS-free gels, the hybrid gels own better mechanical properties with higher tensile and compressive strength. Meantime, except the decreased swelling ratio in acid condition, the OP-PD gels still keep excellent swelling ability with obvious pH and temperature double responsiveness, which is affected by the content of Oa-POSS slightly. All OP-PD gels exhibit an ultrarapid deswelling rate due to the interconnected micropores structure caused by freezing and the formation of microhydrophobic region around POSS particles. Moreover, the application potential of OP-PD gels in drug release was exploited by using flutamide as target drug, the result showed that the increased Oa-POSS could improve the drug loading ability, and OP-PD gels showed well controlled-release effect in simulated human stomachic condition.