Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy

Sufficient energy generation based on effective transport of nutrient via abundant blood vessels in tumor tissue and subsequent oxidative metabolism in mitochondria is critical for growth, proliferation and migration of tumor. Thus the strategy to cut off this transport pathway (blood vessels) and simultaneously close the power house (mitochondria) is highly desired for tumor treatment. Herein, we fabricated a bionic nanocarrier with core-shell-corona structure to give selective and effective tumor therapy via stepwise destruction of existed tumor vessel, inhibition of tumor angiogenesis and dysfunction of tumor mitochondria. The core of this bionic nanocarrier consists of combretastatin A4 phosphate (CA4P) and vitamin K2 (VK2) co-loaded mesoporous silica nanoparticle (MSNs), which is in charge of the vasculature destruction and mitochondrial dysfunction after cargos release. The N-tert-butylacrylamide (TBAM) and tri-sulfated N-acetylglucosamine (TSAG) shell served as artificial affinity reagent against vascular endothelial growth factor (VEGF) for angiogenesis inhibition. As to guarantee that these actions only happened in tumor, the hyaluronic acid (HA) corona was introduced to endow the nanocarrier with tumor targeting property and stimuli-responsiveness for accurate therapy. Both in vitro and in vivo results indicated that the CA4P/VK2-MSNs-TBAM/TSAG-HA (CVMMGH for short) nanocarrier combined well-controllable manipulation of tumor vasculature and tumor mitochondria to effectivly cut off the tumorigenic energy supply, which performed significant inhibition of tumor growth, demonstrating the great candidate of our strategy for effective tumor therapy.

Related Products

Cat.No. Product Name Information
S7204 Fosbretabulin (Combretastatin A4 Phosphate (CA4P)) Disodium Fosbretabulin (Combretastatin A4 Phosphate, CA4P, CA 4DP) Disodium is the water-soluble prodrug of Combretastatin A4 (CA4), which is a microtubule-targeting agent that binds β-tubulin with Kd of 0.4 μM in a cell-free assay. Fosbretabulin Disodium inhibits the polymerization of tubulin with IC50 of 2.4 μM, and also disrupts tumor vasculature. Fosbretabulin disodium induces mitotic arrest and apoptosis in endothelial cells. Phase 3.

Related Targets

Microtubule Associated Apoptosis related