HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma

Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma.

Related Products

Cat.No. Product Name Information
S7596 CAY10603 CAY10603 (BML-281) is a potent and selective HDAC6 inhibitor with IC50 of 2 pM, >200-fold selectivity over other HDACs.

Related Targets