Category

Archives

Histone Deacetylase Inhibition Attenuates Aortic Remodeling in Rats under Pressure Overload

The use of histone deacetylase (HDAC) inhibitor is a novel therapeutic strategy for cardiovascular disease. Studies have shown that many HDAC inhibitors have the ability to reduce the aortic remodeling in various animal models. We hypothesized that the HDAC inhibitor, MGCD0103 (MGCD), attenuates aortic remodeling in rats under pressure overload-induced by transverse aortic constriction (TAC). The aortic ring tension analysis was conducted using the thoracic aorta. Sections of the aorta were visualized after hematoxylin and eosin, trichrome, and Verhoeff-van Gieson staining, and immunohistochemistry. The expression of genes related to aortic remodeling (αSMAMmp2, and Mmp9) and angiotensin receptors (Agtr1 and Agtr2) was determined by quantitative real-time polymerase chain reaction. There was a significant decrease in relaxation of the aorta when treated with MGCD. Fibrosis of the aortic wall and expression of angiotensin receptors increased in TAC rats, which was attenuated by MGCD. These results indicate that MGCD, an HDAC inhibitor, attenuates aortic remodeling in rats with TAC-induced pressure overload rats and may serve as a potential therapeutic target of antiaortic remodeling in pressure overload-induced hypertension-related diseases.

Related Products

Cat.No. Product Name Information
S1122 Mocetinostat (MGCD0103) Mocetinostat (MGCD0103, MG0103) is a potent HDAC inhibitor with most potency for HDAC1 with IC50 of 0.15 μM in a cell-free assay, 2- to 10- fold selectivity against HDAC2, 3, and 11, and no activity to HDAC4, 5, 6, 7, and 8. Mocetinostat (MGCD0103) induces apoptosis and autophagy. Phase 2.

Related Targets

HDAC Autophagy Apoptosis related