Category

Archives

Visfatin attenuates the ox-LDL-induced senescence of endothelial progenitor cells by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway

Endothelial progenitor cells (EPCs) play an important role in aging-associated senescence, thereby potentially contributing to vascular pathologies. Visfatin, identified as a new adipocytokine, is closely associated with the senescence of human cells. However, the effects of visfatin on the oxidized low-density lipoprotein (ox-LDL)-induced senescence of EPCs has not yet been explored, to the best of our knowledge. For this purpose, in the present study, we examined the effects of visfatin in ox-LDL-stimulated EPCs as well as the underlying mechanism responsible for these effects. We found that visfatin attenuated the ox-LDL-induced senescence of EPCs by repressing β-galactosidase expression and recovering telomerase activity. Western blot analysis confirmed that visfatin induced a dose-dependent increase in sirtuin 1 (SIRT1) expression in EPCs and ox-LDL exposure decreased SIRT1 expression. Silencing SIRT1 abolished the inhibition of EPC senescence and the suppression of p53 expression induced by visfatin. Moreover, visfatin attenuated the inhibition of phosphorylation of Akt, phosphoinositide-3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) induced by ox-LDL. Taken together, these findings suggest that the treatment of EPCs with visfatin markedly attenuates the ox-LDL-induced senescence of EPCs by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway.

Related Products

Cat.No. Product Name Information Publications Customer Product Validation
S1105 LY294002 LY294002 is the first synthetic molecule known to inhibit PI3Kα/δ/β with IC50 of 0.5 μM/0.57 μM/0.97 μM, respectively; more stable in solution than Wortmannin, and also blocks autophagosome formation. It not only binds to class I PI3Ks and other PI3K-related kinases, but also to novel targets seemingly unrelated to the PI3K family. (233) (15)

Related Targets