Chloroquine diphosphate
For research use only.
Catalog No.S4157
126 publications

CAS No. 50-63-5
Chloroquine diphosphate is a 4-aminoquinoline anti-malarial and anti-rheumatoid agent, also acting as an ATM activator. Chloroquine is also an inhibitor of toll-like receptors (TLRs).
Purity & Quality Control
Choose Selective ATM/ATR Inhibitors
Biological Activity
Description | Chloroquine diphosphate is a 4-aminoquinoline anti-malarial and anti-rheumatoid agent, also acting as an ATM activator. Chloroquine is also an inhibitor of toll-like receptors (TLRs). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Targets |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro |
Chloroquine is a chemotherapeutic agent for the clinical treatment of malaria. Chloroquine is able to bind to DNA, and inhibit DNA replication and RNA synthesis which in turn results in cell death. The effect of Chloroquine may also be related to the formation of a toxic heme-Chloroquine complex. Chloroquine inhibits trophozoite hemoglobin degradation through increasing vacuolar pH and inhibiting the activity of vacuolar phospholipase, vacuolar proteases, and heme polymerase[1]. Chloroquine possesses definite antirheumatic properties. Chloroquine has immuno-modulatory effects, suppressing the production/release of tumour necrosis factor and interleukin 6. Moreover, Chloroquine exerts direct antiviral effects, inhibiting pH-dependent steps of the replication of several viruses including members of the flaviviruses, retroviruses, and coronaviruses. Its best-studied effects are those against HIV replication[2]. Chloroquine can accumulate inside the macrophage phagolysosome by ion trapping where it exerts potent antifungal activity against Histoplasma capsulatum and Cryptococcus neoformans by distinct mechanisms. Chloroquine inhibits growth of H. capsulatum by pH-dependent iron deprivation, whereas it is directly toxic to C. neoformans[3]. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cell Data |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assay |
|
Protocol
Solubility (25°C)
In vitro | Water | 100 mg/mL (193.85 mM) |
---|---|---|
DMSO | Insoluble | |
Ethanol | Insoluble |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 515.86 |
---|---|
Formula | C18H26ClN3.2H3O4P |
CAS No. | 50-63-5 |
Storage |
powder in solvent |
Synonyms | N/A |
Smiles | CCN(CC)CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl.OP(=O)(O)O.OP(=O)(O)O |
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment) | ||||||||||
Dosage | mg/kg | Average weight of animals | g | Dosing volume per animal | ul | Number of animals | ||||
Step 2: Enter the in vivo formulation () | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
CalculateReset |
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: : mg drug pre-dissolved in μL DMSO (Master liquid concentration mg/mL,)
Method for preparing in vivo formulation:Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80,mix and clarify, next add μL ddH2O,mix and clarify.
1.Please make sure the liquid is clear before adding the next solvent.
2.Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Clinical Trial Information
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
---|---|---|---|---|---|---|
NCT04443270 | Not yet recruiting | Drug: Chloroquine phosphate | COVID-19 | CMN 20 de Noviembre | July 27 2020 | Phase 1 |
NCT04462367 | Not yet recruiting | -- | COVID19|Coronavirus Infection|Pregnancy Disease|Severe Acute Respiratory Syndrome | Instituto Materno Infantil Prof. Fernando Figueira | July 1 2020 | -- |
NCT04340544 | Terminated | Drug: Hydroxychloroquine|Drug: Placebo | COVID-19 | University Hospital Tuebingen|Robert Bosch Medical Center|Universitätsklinikum Hamburg-Eppendorf|Bernhard Nocht Institute for Tropical Medicine | April 22 2020 | Phase 2 |
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.