AZD1390
For research use only.
Catalog No.S8680
1 publication

CAS No. 2089288-03-7
AZD1390 is a first-in-class orally available and CNS penetrant ATM inhibitor with an IC50 of 0.78 nM in cells and >10,000-fold selectivity over closely related members of the PIKK family of enzymes and excellent selectivity across a broad panel of kinases.
Selleck's AZD1390 has been cited by 1 publication
Purity & Quality Control
Choose Selective ATM/ATR Inhibitors
Biological Activity
Description | AZD1390 is a first-in-class orally available and CNS penetrant ATM inhibitor with an IC50 of 0.78 nM in cells and >10,000-fold selectivity over closely related members of the PIKK family of enzymes and excellent selectivity across a broad panel of kinases. | ||||||
---|---|---|---|---|---|---|---|
Targets |
|
||||||
In vitro |
AZD1390 blocks ATM-dependent DDR (DNA damage response) pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. AZD1390 results in increased genome instability[2]. |
||||||
Assay |
|
||||||
In vivo | AZD1390 displays excellent oral bioavailability in preclinical species (66% in rat and 74% in dog). It can efficiently cross the BBB in non-human primate PET studies. Profound tumor regressions and increased animal survival (>50 days) have been observed in orthotopic xenograft models of brain cancer following just 2 or 4 days combination treatment of AZD1390 with radiotherapy, compared to radiotherapy treatment alone[1]. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induces tumor regressions and increased animal survival compared to IR treatment alone. AZD1390 has favorable physical, chemical, PK, and PD properties suitable for clinical applications that require exposures within the central nervous system[2]. |
Protocol
Cell Research: |
- Collapse
|
---|---|
Animal Research: |
- Collapse
|
Solubility (25°C)
In vitro | Ethanol | 95 mg/mL (198.92 mM) |
---|---|---|
DMSO | 14 mg/mL (29.31 mM) | |
Water | Insoluble |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 477.57 |
---|---|
Formula | C27H32FN5O2 |
CAS No. | 2089288-03-7 |
Storage |
powder in solvent |
Synonyms | N/A |
Smiles | CC(C)N1C2=C(C=NC3=CC(=C(C=C32)C4=CN=C(C=C4)OCCCN5CCCCC5)F)N(C1=O)C |
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment) | ||||||||||
Dosage | mg/kg | Average weight of animals | g | Dosing volume per animal | ul | Number of animals | ||||
Step 2: Enter the in vivo formulation () | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
CalculateReset |
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: : mg drug pre-dissolved in μL DMSO (Master liquid concentration mg/mL,)
Method for preparing in vivo formulation:Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80,mix and clarify, next add μL ddH2O,mix and clarify.
1.Please make sure the liquid is clear before adding the next solvent.
2.Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.