GSK126

For research use only.

Catalog No.S7061 Synonyms: GSK2816126A, GSK2816126

98 publications

GSK126 Chemical Structure

CAS No. 1346574-57-9

GSK126 (GSK2816126A, GSK2816126) is a potent, highly selective EZH2 methyltransferase inhibitor with IC50 of 9.9 nM, >1000-fold selective for EZH2 over 20 other human methyltransferases.

Selleck's GSK126 has been cited by 98 publications

Purity & Quality Control

Choose Selective Histone Methyltransferase Inhibitors

Biological Activity

Description GSK126 (GSK2816126A, GSK2816126) is a potent, highly selective EZH2 methyltransferase inhibitor with IC50 of 9.9 nM, >1000-fold selective for EZH2 over 20 other human methyltransferases.
Targets
EZH2 [1]
(Cell-free assay)
9.9 nM
In vitro

In vitro, GSK126 most potently inhibits H3K27me3, followed by H3K27me2 in both EZH2 wild-type and mutant DLBCL cell lines. GSK126 also effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines, and induces transcriptional activation of EZH2 target genes in sensitive cell lines. [1] In A687V EZH2-mutant cells, GSK126 treatment results in a global decrease in H3K27me3, robust gene activation, caspase activation, and decreased proliferation. [2] In parental H2087 cells, GSK126 inhibits the expression of VEGF-A and phosphorylated Ser(473)-AKT, and thus causes the inhibition of cell proliferation, migration and metastasis. [3]

Cell Data
Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID
human U87MG cells MUTDfZRwfG:6aXRCpIF{e2G7 MnjCO|IhcA>? NIm5Z3ZEgXSxdH;4bYNqfHliYXfhbY5{fCCqdX3hckBWQDePRzDj[YxteyCjc4Pld5Nm\CCjczDndo94fGhiaX7obYJqfGmxbjDh[pRmeiB5MjDodpMh[nliV2PUMVEh[XO|YYmsJGdKPTB;MkiuOUDPxE1w NHvOXow9[SC2YYLn[ZQ:L1:kbHHub{chcHKnZk2nbJR1eHN8Lz;weYJu\WRwbnPibU5vdG1wbnnoModwfi9{NEe2O|g2OCd-MkS3Olc5PTB:L3G+
human A549 cells Mn;TR5l1d3SxeHnjxsBie3OjeR?= NEfDNIE4OiCq M4SwTWN6fG:2b4jpZ4l1gSCjZ3HpcpN1KGi3bXHuJGE2PDliY3XscJMh[XO|ZYPz[YQh[XNiZ4Lve5RpKGmwaHnibZRqd25iYX\0[ZIhPzJiaILzJIJ6KFeVVD2xJIF{e2G7LDDHTVUxRTF6Lkeg{txONg>? MWC8ZUB1[XKpZYS9K39jdGGwazegbJJm\j1paIT0dJM7Ny:ydXLt[YQvdmOkaT7ucI0vdmmqLnfvek8zPDd4N{i1NEc,OjR5Nke4OVA9N2F-
human T98G cells MYPDfZRwfG:6aXRCpIF{e2G7 M2LCOFczKGh? MlP3R5l1d3SxeHnjbZR6KGGpYXnud5QhcHWvYX6gWFk5TyClZXzsd{Bie3Onc4Pl[EBieyCpcn;3eIghcW6qaXLpeIlwdiCjZoTldkA4OiCqcoOgZpkhX1OWLUGgZZN{[XluIFfJOVA:OTJwNjFOwG0v MnX2QIEhfGG{Z3X0QUdg[myjbnunJIhz\WZ;J3j0eJB{Qi9xcIXicYVlNm6lYnmucoxuNm6raD7nc5YwOjR5Nke4OVAoRjJ2N{[3PFUxRC:jPh?=
human Daudi cells NWjHTGdiS3m2b4TvfIlkyqCjc4PhfS=> M363cVczKGh? MWfDfZRwfG:6aXPpeJkh[WejaX7zeEBpfW2jbjDEZZVlcSClZXzsd{Bie3Onc4Pl[EBieyCpcn;3eIghcW6qaXLpeIlwdiCjZoTldkA4OiCqcoOgZpkhX1OWLUGgZZN{[XluIFfJOVA:OTFwMjFOwG0v M1LEbVxiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ2N{[3PFUxLz5{NEe2O|g2ODxxYU6=
human PC3 cells NXfqcm1tS3m2b4TvfIlkyqCjc4PhfS=> MYW3NkBp MoL4R5l1d3SxeHnjbZR6KGGpYXnud5QhcHWvYX6gVGM{KGOnbHzzJIF{e2W|c3XkJIF{KGe{b4f0bEBqdmirYnn0bY9vKGGodHXyJFczKGi{czDifUBYW1RvMTDhd5NigSxiR1m1NF06NjRizszNMi=> M3e4OFxiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ2N{[3PFUxLz5{NEe2O|g2ODxxYU6=
human U2932 cells Mm\0R5l1d3SxeHnjxsBie3OjeR?= NIrDdYY4OiCq MljWR5l1d3SxeHnjbZR6KGGpYXnud5QhcHWvYX6gWVI6OzJiY3XscJMh[XO|ZYPz[YQh[XNiZ4Lve5RpKGmwaHnibZRqd25iYX\0[ZIhPzJiaILzJIJ6KFeVVD2xJIF{e2G7LDDHTVUxRTZwNzFOwG0v NHzuSXo9[SC2YYLn[ZQ:L1:kbHHub{chcHKnZk2nbJR1eHN8Lz;weYJu\WRwbnPibU5vdG1wbnnoModwfi9{NEe2O|g2OCd-MkS3Olc5PTB:L3G+
human HeLa cells NWixS2FkTnWwY4Tpc44h[XO|YYm= NI[5RXY4OiCq MoP4TY5pcWKrdHnvckBw\iCHWliyJIlvKGi3bXHuJGhmVGFiY3XscJMh[XO|ZYPz[YQh[XNicnXkeYN1cW:wIHnuJGg{UzJ5bXWzJIxmfmWuczDpcoN2[mG2ZXSg[o9zKDd{IHjyd{BjgSCHTFnTRUBu\XSqb3SsJGlEPTB;MD6yPEDPxE1w NUX0SZhRRGFidHHy[4V1RSehYnzhcosoKGi{ZX[9K4h1fHC|Oj:vdJVjdWWmLn7jZokvdmyvLn7pbE5od3ZxMk[xPFkxPzhpPkK2NVg6ODd6PD;hQi=>
human Pfeiffer cells NEHIVZJEgXSxdH;4bYPDqGG|c3H5 MXi3NkBp NIqwfZNEgXSxdH;4bYNqfHliYXfhbY5{fCCqdX3hckBR\mWrZn\ldkBk\WyuczDlfJBz\XO|aX7nJGVbUDJiQU[2O2chdXW2YX70JIF{e2W|c3XkJIF{KGe{b4f0bEBqdmirYnn0bY9vKGGodHXyJFczKGi{czDifUBYW1RvMTDhd5NigSxiR1m1NF0xNjF6IN88UU4> MY[8ZUB1[XKpZYS9K39jdGGwazegbJJm\j1paIT0dJM7Ny:ydXLt[YQvdmOkaT7ucI0vdmmqLnfvek8zPDd4N{i1NEc,OjR5Nke4OVA9N2F-
infected SF9 cells NV;QWos1SmmwZHnu[{Bi\m[rbnn0fUB1dyCHWliyJEh2dmuwb4fuJI9zcWerbjmg[ZhxemW|c3XkJIlvKGKjY4Xsc5ZqenW|IHnu[oVkfGWmIGPGPUBk\WyuczDjc{1mgHC{ZYPzbY5oKFOXWkGyM2VGTC:UYlHwOFgh[2:vcHzlfEBie3Onc4Pl[EBieyCkaX7kbY5oKG:oZj3yZZRmKGG2IECuOEB2VSCrbnP1ZoF1\WRiZn;yJFIxKG2rboOgZpkhWS2WT1[gcYF{eyC|cHXjeJJwdWW2com= MojxQIEhfGG{Z3X0QUdg[myjbnunJIhz\WZ;J3j0eJB{Qi9xcIXicYVlNm6lYnmucoxuNm6raD7nc5YwOjd3MUK4N|EoRjJ5NUGyPFMyRC:jPh?=
A673 cells NF7PT5pyUFSVIH;mJJBm\GmjdILpZ{Bk[W6lZYKgZ4VtdCCuaX7ld{B1dyCrZHXueIlngSCvdXz0bZBt\SCxcIDvdpR2dmm2aXXzJIZweiCmcoXnJJJmeHW{cH;zbY5oQiCScnntZZJ6KHOlcnXlckBnd3JiQU[3N{Bk\Wyucx?= M4DH[|xiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ7NEO1NVM6Lz5{OUSzOVE{QTxxYU6=
DAOY cells M3i0WpFJXFNib3[gdIVlcWG2cnnjJINidmOncjDj[YxtKGyrbnXzJJRwKGmmZX70bYZ6KG23bITpdIxmKG:ycH;yeJVvcXSrZYOg[o9zKGS{dXegdoVxfXKyb4Ppcoc7KFC{aX3hdpkhe2O{ZXXuJIZweiCGQV;ZJINmdGy| MkjXQIEhfGG{Z3X0QUdg[myjbnunJIhz\WZ;J3j0eJB{Qi9xcIXicYVlNm6lYnmucoxuNm6raD7nc5YwOjl2M{WxN|koRjJ7NEO1NVM6RC:jPh?=
Saos-2 cells NFrs[|RyUFSVIH;mJJBm\GmjdILpZ{Bk[W6lZYKgZ4VtdCCuaX7ld{B1dyCrZHXueIlngSCvdXz0bZBt\SCxcIDvdpR2dmm2aXXzJIZweiCmcoXnJJJmeHW{cH;zbY5oQiCScnntZZJ6KHOlcnXlckBnd3JiU3Hvd{0zKGOnbHzz M13nTlxiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ7NEO1NVM6Lz5{OUSzOVE{QTxxYU6=
BT-37 cells M1G5[5FJXFNib3[gdIVlcWG2cnnjJINidmOncjDj[YxtKGyrbnXzJJRwKGmmZX70bYZ6KG23bITpdIxmKG:ycH;yeJVvcXSrZYOg[o9zKGS{dXegdoVxfXKyb4Ppcoc7KFC{aX3hdpkhe2O{ZXXuJIZweiCEVD2zO{Bk\Wyucx?= NVfTbpU3RGFidHHy[4V1RSehYnzhcosoKGi{ZX[9K4h1fHC|Oj:vdJVjdWWmLn7jZokvdmyvLn7pbE5od3ZxMkm0N|UyOzlpPkK5OFM2OTN7PD;hQi=>
RD cells NIP3OnFyUFSVIH;mJJBm\GmjdILpZ{Bk[W6lZYKgZ4VtdCCuaX7ld{B1dyCrZHXueIlngSCvdXz0bZBt\SCxcIDvdpR2dmm2aXXzJIZweiCmcoXnJJJmeHW{cH;zbY5oQiCScnntZZJ6KHOlcnXlckBnd3JiUlSgZ4VtdHN? Mkn2QIEhfGG{Z3X0QUdg[myjbnunJIhz\WZ;J3j0eJB{Qi9xcIXicYVlNm6lYnmucoxuNm6raD7nc5YwOjl2M{WxN|koRjJ7NEO1NVM6RC:jPh?=
SK-N-SH cells M{XPc5FJXFNib3[gdIVlcWG2cnnjJINidmOncjDj[YxtKGyrbnXzJJRwKGmmZX70bYZ6KG23bITpdIxmKG:ycH;yeJVvcXSrZYOg[o9zKGS{dXegdoVxfXKyb4Ppcoc7KFC{aX3hdpkhe2O{ZXXuJIZweiCVSz3OMXNJKGOnbHzz M4nGcFxiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ7NEO1NVM6Lz5{OUSzOVE{QTxxYU6=
BT-12 cells MlnqdWhVWyCxZjDw[YRq[XS{aXOgZ4Fv[2W{IHPlcIwhdGmwZYOgeI8hcWSnboTp[pkhdXWudHnwcIUhd3Cyb4L0eY5qfGmnczDmc5Ih\HK3ZzDy[ZB2enCxc3nu[|ohWHKrbXHyfUB{[3KnZX6g[o9zKEKWLUGyJINmdGy| NUjTV20zRGFidHHy[4V1RSehYnzhcosoKGi{ZX[9K4h1fHC|Oj:vdJVjdWWmLn7jZokvdmyvLn7pbE5od3ZxMkm0N|UyOzlpPkK5OFM2OTN7PD;hQi=>
MG 63 (6-TG R) cells M4Tu[JFJXFNib3[gdIVlcWG2cnnjJINidmOncjDj[YxtKGyrbnXzJJRwKGmmZX70bYZ6KG23bITpdIxmKG:ycH;yeJVvcXSrZYOg[o9zKGS{dXegdoVxfXKyb4Ppcoc7KFC{aX3hdpkhe2O{ZXXuJIZweiCPRzC2N{ApPi2WRzDSLUBk\Wyucx?= NYT2[2N5RGFidHHy[4V1RSehYnzhcosoKGi{ZX[9K4h1fHC|Oj:vdJVjdWWmLn7jZokvdmyvLn7pbE5od3ZxMkm0N|UyOzlpPkK5OFM2OTN7PD;hQi=>
NB1643 cells NWDR[o0zeUiWUzDv[kBx\WSrYYTybYMh[2GwY3XyJINmdGxibHnu[ZMhfG9iaXTlcpRq\nlibYXseIlxdGVib4Dwc5J1fW6rdHnld{Bnd3JiZIL1[{Bz\XC3coDvd4lv\zpiUILpcYFzgSC|Y4Ll[Y4h\m:{IF7CNVY1OyClZXzsdy=> M1fTWFxiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ7NEO1NVM6Lz5{OUSzOVE{QTxxYU6=
OHS-50 cells M33sZpFJXFNib3[gdIVlcWG2cnnjJINidmOncjDj[YxtKGyrbnXzJJRwKGmmZX70bYZ6KG23bITpdIxmKG:ycH;yeJVvcXSrZYOg[o9zKGS{dXegdoVxfXKyb4Ppcoc7KFC{aX3hdpkhe2O{ZXXuJIZweiCRSGOtOVAh[2WubIO= MVy8ZUB1[XKpZYS9K39jdGGwazegbJJm\j1paIT0dJM7Ny:ydXLt[YQvdmOkaT7ucI0vdmmqLnfvek8zQTR|NUGzPUc,Ojl2M{WxN|k9N2F-
Rh41 cells MmTUdWhVWyCxZjDw[YRq[XS{aXOgZ4Fv[2W{IHPlcIwhdGmwZYOgeI8hcWSnboTp[pkhdXWudHnwcIUhd3Cyb4L0eY5qfGmnczDmc5Ih\HK3ZzDy[ZB2enCxc3nu[|ohWHKrbXHyfUB{[3KnZX6g[o9zKFKqNEGgZ4VtdHN? M4jXRVxiKHSjcnfleF0oZ2KuYX7rK{BpemWoPTfoeJRxezpxL4D1Zo1m\C6wY3LpMo5tdS6waXiu[493NzJ7NEO1NVM6Lz5{OUSzOVE{QTxxYU6=
SK-N-MC cells MoTudWhVWyCxZjDw[YRq[XS{aXOgZ4Fv[2W{IHPlcIwhdGmwZYOgeI8hcWSnboTp[pkhdXWudHnwcIUhd3Cyb4L0eY5qfGmnczDmc5Ih\HK3ZzDy[ZB2enCxc3nu[|ohWHKrbXHyfUB{[3KnZX6g[o9zKFONLV6tUWMh[2WubIO= MV:8ZUB1[XKpZYS9K39jdGGwazegbJJm\j1paIT0dJM7Ny:ydXLt[YQvdmOkaT7ucI0vdmmqLnfvek8zQTR|NUGzPUc,Ojl2M{WxN|k9N2F-
LAN-5 cells M4PyNpFJXFNib3[gdIVlcWG2cnnjJINidmOncjDj[YxtKGyrbnXzJJRwKGmmZX70bYZ6KG23bITpdIxmKG:ycH;yeJVvcXSrZYOg[o9zKGS{dXegdoVxfXKyb4Ppcoc7KFC{aX3hdpkhe2O{ZXXuJIZweiCOQV6tOUBk\Wyucx?= NFnkNZc9[SC2YYLn[ZQ:L1:kbHHub{chcHKnZk2nbJR1eHN8Lz;weYJu\WRwbnPibU5vdG1wbnnoModwfi9{OUSzOVE{QSd-Mkm0N|UyOzl:L3G+

... Click to View More Cell Line Experimental Data

Assay
Methods Test Index PMID
Western blot
β-catenin / c-Myc / LEF1 / DVL2 / DVL3 / p-GSK3β; 

PubMed: 27926488     


RPMI8226, MM.1S and LP1 cells exposed with indicated concentrations of GSK126. Regulatory proteins in Wnt/β-catenin pathway were analyzed by immunoblotting.

XIAP / Survivin / MCL-1 / BID / BIM / BAX / BCL-xl/ Bcl-2; 

PubMed: 27926488     


Dose- and time-dependent effects of GSK126 on apoptosis-related proteins in RPMI8226, MM.1S and LP1 cells were detected by immunoblotting. Arrows indicates the specific bands of corresponding proteins.

H3K27Me3 / EZH2; 

PubMed: 28418882     


Increasing concentrations of GSK126 consistently decreased H3K27 me3 protein levels. After HEC50B and HEC1B cells were treated with various concentrations of GSK126 (0.1–10 μM) or 0.2% DMSO for 24 h, western blotting was performed for EZH2 and H3K27 me3.

27926488 28418882
Immunofluorescence
H3K27me3; 

PubMed: 25053977     


Representative images produced by immunostaining followed by fluorescence in situ hybridisation on RNA for H3K27me3 (green) and Xist (red) on female extraendoderm stem (XEN) cells (GHP7/9 cell line) treated or not with 2 μM GSK126 for 5 days. Arrowheads indicate the nuclear position of the inactive X chromosome coated with Xist RNA. The percentage of visible H3K27me3 accumulation on the Xist-coated X chromosome in each condition is indicated. n > 50. Scale bar = 5 μm.

25053977
Growth inhibition assay
Cell proliferation; 

PubMed: 29685965     


Antiproliferative effects of GSK126 on a panel of cancer cell lines, treated with 1, 10 and 25 µM of the compound for 4 or 5 days (MTS Cell Proliferation Assay). Error bars represent standard deviation. (Online version in colour.)

Cell viability; 

PubMed: 28418882     


After treatment with various concentrations of GSK126 (0.025–20 μM) for 8 days, five endometrial cancer cell lines were subjected to cell viability assay. Cell viability (%) was normalized using cells treated with 0.4% dimethyl sulfoxide (DMSO). The IC50 values of GSK126 in endometrial cancer cell lines ranged from 2.37-5.07 μM.

29685965 28418882
In vivo In mice bearing KARPAS-422 and Pfeiffer xenografts, GSK126 (150 mg/kg/d, i.p.) decreases global H3K27me3, increases gene expression, and thus causes marked tumour regression. [1]

Protocol

Kinase Assay:

[1]

- Collapse

EZH2 assay:

The five-member PRC2 complex (Flag–EZH2, EED, SUZ12, AEBP2, RbAp48) containing either wild-type or mutant EZH2 is prepared. GSK126 is dissolved in DMSO and tested at concentrations of 0.6 nM to 300 nM with a final DMSO concentration of 2.5%. In contrast to wild-type EZH2 which prefers H3K27me0 as a substrate in vitro, EZH2 Y641 mutants prefer H3K27me2 and have little activity with H3K27me0 or H3K27me1. The A677G mutant is distinct from both the wild-type and Y641 mutant forms of EZH2 in that it efficiently methylates H3K27me0, H3K27me1, and H3K27me2; therefore, histone H3 peptides (residues 21–44; 10 μM final) with either K27me0 (wild type, A677G EZH2), K27me1 (A677G EZH2), or K27me2 (A677G, Y641N, Y641C, Y641H, Y641S and Y641F EZH2) are used as methyltransferase substrates. GSK126 is added to plates followed by addition of 6 nM EZH2 complex and peptide. As the potency of GSK126 is at or near the tight binding limit of an assay run at [SAM] = Km, IC50 values are measured at a high concentration of the competitive substrate SAM relative to its Km (7.5 μM SAM where the SAM Km is 0.3 μM). Under these conditions, the contribution from the enzyme concentration becomes relatively small and accurate estimates of Ki can be calculated. Reactions are initiated with [3H]-SAM, incubated for 30 min, quenched with the addition of 500-fold excess unlabelled SAM, and the methylated product peptide is captured on phosphocellulose filters according to the vendor supplied protocol for MSPH Multiscreen plates. Plates are read on a TopCount after adding 20 μL of Microscint-20 cocktail. Apparent Ki values are calculated using the Cheng–Prusoff relationship for a competitive inhibitor. IC50=Ki (1+[S]/Km)+[E]/2, where E is the enzyme and S is the substrate.
Cell Research:

[1]

- Collapse
  • Cell lines: 46 lymphoma cell lines
  • Concentrations: 0~10 μM
  • Incubation Time: 6 days
  • Method:

    The optimal cell seeding is determined empirically for all cell lines by examining the growth of a wide range of seeding densities in a 384-well format to identify conditions that permitted proliferation for 6 days. Cells are then plated at the optimal seeding density 24 h before treatment (in duplicate) with a 20-point two fold dilution series of GSK126 or 0.15% DMSO. Plates are incubated for 6 days at 37°C in 5% CO2. Cells are then lysed with CellTiter-Glo (CTG) and chemiluminescent signal is detected with a TECAN Safire2 microplate reader. In addition, an untreated plate of cells is harvested at the time of compound addition (T0) to quantify the starting number of cells. CTG values obtained after the 6 day treatment are expressed as a percent of the T0 value and plotted against compound concentration. Data are fit with a four-parameter equation to generate a concentration response curve and the concentration of GSK126 required to inhibit 50% of growth (growth IC50) is determined.


    (Only for Reference)
Animal Research:

[1]

- Collapse
  • Animal Models: Female beige SCID mice bearing Pfeiffer or KARPAS-422 tumors
  • Dosages: 150 mg/kg/day
  • Administration: i.p.
    (Only for Reference)

Solubility (25°C)

In vitro DMSO 3 mg/mL warmed (5.69 mM)
Water Insoluble
Ethanol Insoluble
In vivo Add solvents to the product individually and in order(Data is from Selleck tests instead of citations):
4% DMSO+corn oil
For best results, use promptly after mixing.
0.5mg/mL

* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.

Chemical Information

Molecular Weight 526.67
Formula

C31H38N6O2

CAS No. 1346574-57-9
Storage powder
in solvent
Synonyms GSK2816126A, GSK2816126
Smiles CCC(C)N1C=C(C2=C(C=C(C=C21)C3=CN=C(C=C3)N4CCNCC4)C(=O)NCC5=C(C=C(NC5=O)C)C)C

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Dosage mg/kg Average weight of animals g Dosing volume per animal ul Number of animals
Step 2: Enter the in vivo formulation ()
% DMSO % % Tween 80 % ddH2O
CalculateReset

Bio Calculators

Molarity Calculator

Molarity Calculator

Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:

Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)

  • Mass
    Concentration
    Volume
    Molecular Weight

*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and SDS / COA (available on product pages).

Dilution Calculator

Dilution Calculator

Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:

Concentration (start) x Volume (start) = Concentration (final) x Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )

  • C1
    V1
    C2
    V2

* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / COA (available online).

The Serial Dilution Calculator Equation

  • Serial Dilutions

  • Computed Result

  • C1=C0/X C1: LOG(C1):
    C2=C1/X C2: LOG(C2):
    C3=C2/X C3: LOG(C3):
    C4=C3/X C4: LOG(C4):
    C5=C4/X C5: LOG(C5):
    C6=C5/X C6: LOG(C6):
    C7=C6/X C7: LOG(C7):
    C8=C7/X C8: LOG(C8):
Molecular Weight Calculator

Molecular Weight Calculator

Enter the chemical formula of a compound to calculate its molar mass and elemental composition:

Total Molecular Weight: g/mol

Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:

To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.

Definitions of molecular mass, molecular weight, molar mass and molar weight:

Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

Molarity Calculator

Mass Concentration Volume Molecular Weight

Clinical Trial Information

NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02082977 Terminated Drug: GSK2816126 Cancer|Neoplasms GlaxoSmithKline April 24 2014 Phase 1

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3

If you have any other enquiries, please leave a message.

  • * Indicates a Required Field

Frequently Asked Questions

  • Question 1:

    Could you please suggest a vehicle for in vivo uses without oil?

  • Answer:

    S7061 could be dissolved in 4% DMSO+30% PEG 300+ddH2O (0.5mg/ml).

  • Question 2:

    Does this drug require an activation step to be functional? For example, an acidic or basic environment.

  • Answer:

    GSK126 does not require an activation step to be functional.

Histone Methyltransferase Signaling Pathway Map

Tags: buy GSK126 | GSK126 supplier | purchase GSK126 | GSK126 cost | GSK126 manufacturer | order GSK126 | GSK126 distributor
×
Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID