For research use only.

Catalog No.S2178

24 publications

AG-14361 Chemical Structure

CAS No. 328543-09-5

AG14361 is a potent inhibitor of PARP1 with Ki of <5 nM in a cell-free assay. It is at least 1000-fold more potent than the benzamides.

Selleck's AG-14361 has been cited by 24 publications

Purity & Quality Control

Choose Selective PARP Inhibitors

Biological Activity

Description AG14361 is a potent inhibitor of PARP1 with Ki of <5 nM in a cell-free assay. It is at least 1000-fold more potent than the benzamides.
Features The 1st high-potency PARP-1 inhibitor with the specificity & in vivo activity to enhance chemotherapy and radiation therapy of human cancers.
PARP1 [1]
(Cell-free assay)
<5 nM(Ki)
In vitro

AG14361 is at least 1000-fold more potent than the benzamides. The IC50 for AG14361 is 29 nM in permeabilized SW620 cells and 14 nM in intact SW620 cells. Crystallographic analysis of AG14361 bound to the catalytic domain of chicken PARP-1 shows that the tricyclic ring system of AG14361 is located in a pocket composed of amino acid residues Trp861, His862, Gly863, Tyr896, Phe897, Ala898, Lys903, Ser904, Tyr907, and Glu988. AG14361 forms important hydrogen bonds with Ser904 and Gly863 and a water-mediated hydrogen bond with Glu988. AG14361-induced growth inhibition is not attributed to PARP-1-related effects because maximal PARP-1 inhibition is observed at much lower concentrations (≤1 μM) than the GI50. AG14361 at 0.4 μM does not affect cancer cell gene expression or growth, but it increases the antiproliferative activity of temozolomide and topotecan, and inhibits recovery from potentially lethal γ-radiation damage in LoVo cells by 73%. In addition, 0.4 μM AG14361 does not substantially alter gene expression as shown by microarray analysis. A 17-hour exposure of A549 cells to 0.4 μM AG14361 does not change the expression of the 6800 genes. Thus, although 0.4 μM AG14361 inhibits cellular PARP-1 activity by more than 85%, it essentially does not change gene expression and cell proliferation, indicating that the cellular effects of this low concentration of AG14361 are specific for PARP-1 inhibition. Higher, growth-inhibitory concentrations of AG14361 affects gene expression, but these effects are not likely to be related to PARP-1 inhibition because cell proliferation is affected equally in PARP-/- and PARP-1+/+ cells. AG14361 is rapidly absorbed into the bloodstream and distributed to the tumor and liver with lower concentrations detected in the brain. Tissue-to-plasma concentration ratio indicates that AG14361 is retained in tumor tissue over time in both xenograft models, with tumor concentrations (≥15 μM for 2 hours) in excess of that required to inhibit PARP-1 activity in vitro. [1] AG14361 enhances temozolomide activity in all MMR-proficient cells (1.5–3.3-fold) but is more effective in MMR-deficient cells (3.7–5.2-fold potentiation), overcoming temozolomide resistance. In contrast, benzylguanine only increases the efficacy of temozolomide in MMR-proficient cells but is ineffective in MMR-deficient cells. [2] AG14361 enhances the growth-inhibitory and cytotoxic effects of topoisomerase I poisons. AG14361 increases the persistence of camptothecin-induced DNA single-strand breaks. [3]

Cell Data
Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID
LoVo cells MYXGeY5kfGmxbjDhd5NigQ>? NIjkPZdEd26lZX70doF1cW:wIIToZZQh\2m4ZYOgOVAmKGe{b4f0bEBqdmirYnn0bY9vKGmwIFzvWo8h[2WubIOsJIFkfGm4aYT5JIV5eHKnc4Pl[EBieyCJSUWwMEBIUTVyPUGxMlIh|ryP MljFNVI2OTlyNUm=

... Click to View More Cell Line Experimental Data

In vivo AG14361 treatment before irradiation statistically significantly increases the sensitivity to radiation therapy of mice bearing LoVo xenografts. AG14361 statistically significantly increases blood flow in xenografts and thus potentially increases drug delivery to tumor xenografts. In vivo, nontoxic doses of AG14361 increases the delay of LoVo xenograft growth induced by irinotecan, x-irradiation, or temozolomide by 2- to 3-fold. Coadministration of AG14361 with temozolomide statistically significantly increases temozolomide activity against LoVo xenografts, with the tumor growth delay being increased from 3 days to 9 days by AG14361 at 5 mg/kg and to 10 days by AG14361 at 15 mg/kg. The combination of AG14361 and temozolomide causes complete regression of SW620 xenograft tumors. PARP-1 activity, detected by pharmacodynamic assay, in SW620 xenografts is inhibited by more than 75% for at least 4 hours after intraperitoneal administration of AG14361 (10 mg/kg), consistent with the concentration of AG14361 persisting in the tumor. [1]


Kinase Assay:[1]
- Collapse

PARP-1 Activity Assays:

The activity of full-length recombinant human PARP-1 is measured in a reaction mixture containing 20 nM PARP-1, 500 μM NAD+ plus [32P]NAD+ (0.1–0.3 μCi per reaction mixture), and activated calf thymus DNA (10 μg/mL) at 25oC; the reaction is terminated after 4 minutes by adding ice-cold 10% (wt/vol) trichloroacetic acid. The reaction product [32P]ADP-ribose incorporated into acid-insoluble material is deposited onto Whatman GF/C glass fiber filters with a Bio-Dot microfiltration apparatus and quantified with a PhosphorImager. Inhibition of PARP-1 activity by AG14361 at 0–600 nM is measured, and the Ki for AG14361 is calculated by nonlinear regression analysis.
Cell Research:[1]
- Collapse
  • Cell lines: LoVo and SW620 colorectal cancer cells and A549 non–small-cell lung carcinoma cells.
  • Concentrations: 0-20 μM
  • Incubation Time: 5 days
  • Method: LoVo and SW620 colorectal cancer cells and A549 non–small-cell lung carcinoma cells are maintained in RPMI-1640 medium containing 10% fetal calf serum. Cell growth inhibition is estimated in exponentially growing LoVo, A549, and SW620 cells in 96-well plates. Cells are exposed to AG14361 (0–20 μM) alone or in the presence of 400 μM temozolomide. After 5 days of culture, these cells are fixed with 10% trichloroacetic acid and stained with sulforhodamine B. The concentration of temozolomide, topotecan, and AG14361 alone or in combination that inhibits growth by 50% (GI50) is calculated from computer-generated curves. Recovery from potentially lethal damage is measured in confluent LoVo cell cultures arrested in G1 phase to mimic the radiation-resistant quiescent cell population in tumors. Such cells are exposed to 8 Gy of γ-irradiation and then harvested and plated for colony formation assay immediately or maintained as growth-arrested confluent cultures for a 4-hour or 24-hour recovery period before harvesting and plating for the colony formation assay. Where indicated, 0.4 μM AG14361 is added 30 minutes before irradiation and is present in the recovery incubation.
    (Only for Reference)
Animal Research:[1]
- Collapse
  • Animal Models: SW620 or LoVo xenografts in CD-1 nude mice
  • Dosages: 5 or 15 mg/kg
  • Administration: Treated intraperitoneally, once daily for 5 days
    (Only for Reference)

Solubility (25°C)

In vitro DMSO 12 mg/mL (37.45 mM)
Water Insoluble
Ethanol Insoluble
In vivo Add solvents to the product individually and in order(Data is from Selleck tests instead of citations):
4% DMSO+ddH2O
For best results, use promptly after mixing.

* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.

Chemical Information

Molecular Weight 320.39


CAS No. 328543-09-5
Storage powder
in solvent
Synonyms N/A
Smiles CN(C)CC1=CC=C(C=C1)C2=NC3=CC=CC4=C3N2CCNC4=O

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Dosage mg/kg Average weight of animals g Dosing volume per animal ul Number of animals
Step 2: Enter the in vivo formulation ()
% DMSO % % Tween 80 % ddH2O

Bio Calculators

Molarity Calculator

Molarity Calculator

Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:

Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)

  • Mass
    Molecular Weight

*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and SDS / COA (available on product pages).

Dilution Calculator

Dilution Calculator

Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:

Concentration (start) x Volume (start) = Concentration (final) x Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )

  • C1

* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / COA (available online).

The Serial Dilution Calculator Equation

  • Serial Dilutions

  • Computed Result

  • C1=C0/X C1: LOG(C1):
    C2=C1/X C2: LOG(C2):
    C3=C2/X C3: LOG(C3):
    C4=C3/X C4: LOG(C4):
    C5=C4/X C5: LOG(C5):
    C6=C5/X C6: LOG(C6):
    C7=C6/X C7: LOG(C7):
    C8=C7/X C8: LOG(C8):
Molecular Weight Calculator

Molecular Weight Calculator

Enter the chemical formula of a compound to calculate its molar mass and elemental composition:

Total Molecular Weight: g/mol

Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:

To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.

Definitions of molecular mass, molecular weight, molar mass and molar weight:

Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

Molarity Calculator

Mass Concentration Volume Molecular Weight

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3

If you have any other enquiries, please leave a message.

  • * Indicates a Required Field

PARP Signaling Pathway Map

Related PARP Products

Tags: buy AG-14361 | AG-14361 supplier | purchase AG-14361 | AG-14361 cost | AG-14361 manufacturer | order AG-14361 | AG-14361 distributor
Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID