KRN 633
For research use only.
Catalog No.S1557
5 publications

CAS No. 286370-15-8
KRN 633 is an ATP-competitive inhibitor of VEGFR1/2/3 with IC50 of 170 nM/160 nM/125 nM, weakly inhibits PDGFR-α/β and c-Kit, does not block the phosphorylation of FGFR-1, EGFR or c-Met in cell.
Selleck's KRN 633 has been cited by 5 publications
1 Customer Review
-
Inhibited migration of hNSCs toward HeLa cells with the treatment of KRN633, a VEGFR2 inhibitor. The cultured hNSCs were treated with KRN633 for 6 h. After that, the transwell migration assay was performed as described above. The number of migrated cells was counted and the results were presented as means ± SD. Magnification,× 200. *P < 0.05 vs. KRN633 non-treated GESTECs. (A) Migrated HB1.F3.CD cells. (B) Migrated HB1.F3.CD.IFN-β cells.
Mol Cells, 2013, 36:347-354.. KRN 633 purchased from Selleck.
Purity & Quality Control
Choose Selective VEGFR Inhibitors
Biological Activity
Description | KRN 633 is an ATP-competitive inhibitor of VEGFR1/2/3 with IC50 of 170 nM/160 nM/125 nM, weakly inhibits PDGFR-α/β and c-Kit, does not block the phosphorylation of FGFR-1, EGFR or c-Met in cell. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Targets |
|
|||||||||||
In vitro |
KRN 633, a novel quinazoline urea derivative, strongly inhibits VEGFR1, VEGFR2 and VEGFR3 receptors with IC50 values of 170 nM, 160 nM and 125 nM respectively. It shows lower inhibitory activity towards non-RTKs, such as PDGF receptor (PDGFRα and β, c-Kit, breast tumor kinase, and tunica interna endothelial cell kinase tyrosine kinases (IC50 = 965, 9850, 4330, 9200, and 9900 nM, respectively). KRN 633 potently inhibits ligand VEGF induced phosphorylation of VEGFR2 in HUVECs with an IC50 of 1.16 nM. KRN 633 also inhibits VEGF-dependent, but not bFGF-dependent, phosphorylation of the MAP kinases in endothelial cells, with IC50 values of 3.51 nM and 6.08 nM for ERK1 and ERK2, respectively. KRN633 has also been shown to inhibit the VEGF-driven proliferation of HUVECs with an IC50 of 14.9 nM, but it only suppresses FGF-driven proliferation at 3 μM weakly. [1] KRN 633 inhibits hypoxia-induced transcriptional activation of HIF-1α in a concentration-dependent manner with an IC50 of 3.79 μM, through the inhibition of both Akt and ERK phosphorylation signaling pathways. [2] |
|||||||||||
In vivo | Although not cytotoxic to various cancer cells in vitro, KRN633 exhibits excellent antitumor activity in vivo due to its inhibitory effect on tumor vessel formation and vascular permeability. Once-daily administration of KRN633 at 100 mg/kg/d produces significant tumor growth inhibition in A549, LC-6-LCK, HT29, Ls174T, LNCap and Du145 cells while twice-daily administration of KRN633 at 100 mg/kg induces ~90% growth inhibition of HT29 tumors. [1] Treatment of mid-pregnancy mice with KRN 633 (300 mg/kg, p.o.) reduces the blood supply to fetal tissues due to diminished vascularization in both placenta and fetal organs and consequently increases the risk of induction of intrauterine growth restriction (IUGR). [3] |
Protocol
Kinase Assay:[1] |
- Collapse
Cell-Free Kinase Assays: Cell-free kinase assays are done to obtain IC50 values against a variety of recombinant VEGF receptors. KRN633 is tested at concentrations varying from 0.3 nM to 10 μM. All assays are done in quadruplicate with 1 μM ATP. |
---|---|
Cell Research:[1] |
- Collapse
|
Animal Research:[1] |
- Collapse
|
Solubility (25°C)
In vitro | DMSO | 9 mg/mL (21.58 mM) |
---|---|---|
Water | Insoluble | |
Ethanol | Insoluble | |
In vivo | Add solvents to the product individually and in order(Data is from Selleck tests instead of citations): 0.5% methylcellulose+0.2% Tween 80 For best results, use promptly after mixing. |
10 mg/mL |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 416.86 |
---|---|
Formula | C20H21ClN4O4 |
CAS No. | 286370-15-8 |
Storage |
powder in solvent |
Synonyms | N/A |
Smiles | CCCNC(=O)NC1=C(C=C(C=C1)OC2=NC=NC3=CC(=C(C=C32)OC)OC)Cl |
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment) | ||||||||||
Dosage | mg/kg | Average weight of animals | g | Dosing volume per animal | ul | Number of animals | ||||
Step 2: Enter the in vivo formulation () | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
CalculateReset |
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: : mg drug pre-dissolved in μL DMSO (Master liquid concentration mg/mL,)
Method for preparing in vivo formulation:Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80,mix and clarify, next add μL ddH2O,mix and clarify.
1.Please make sure the liquid is clear before adding the next solvent.
2.Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.