BTZ043 Racemate

For research use only.

Catalog No.S1097

6 publications

BTZ043 Racemate Chemical Structure

CAS No. 957217-65-1

BTZ043 racemate is a decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) inhibitor acting as a new antimycobacterial agent that kill Mycobacterium tuberculosis.

Selleck's BTZ043 Racemate has been cited by 6 publications

Purity & Quality Control

Choose Selective Bacterial Inhibitors

Biological Activity

Description BTZ043 racemate is a decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) inhibitor acting as a new antimycobacterial agent that kill Mycobacterium tuberculosis.
Features Greater activity against M. tuberculosis than EMB.
DprE1 [1]
In vitro

By targeting decaprenylphosphoryl-β-D-ribose 2'-epimerase, BTZ043 abolishes the formation of decaprenylphosphoryl arabinose, leading to cell lysis and death of Mycobacterium tuberculosis. BTZ043 displays similar activity against all clinical isolates of M. tuberculosis, including multidrug-resistant and extensively drug-resistant strains. BTZ043 displays significant activity against M. tuberculosis H37Rv and Mycobacterium smegmatis with MIC of 1 ng/mL (2.3 nM) and 4 ng/mL (9.2 nM), respectively, which is more potent than those of the existing tuberculosis (TB) drugs isoniazid (INH) and ethambutol (EMB) with MIC of 0.02-0.2 μg/mL and 1-5 μg/mL, respectively. BTZ043 is less effective in two different model systems (auxotrophy and starvation) involving metabolically inert M. tuberculosis, indicating that BTZ043 blocks a step in active metabolism similar to isoniazid (INH). BTZ043 treatment in M. smegmatis cells decreases the growth rate rapidly followed by a swelling of the poles and lysis of the cells after a few hours, which is similar but delayed in M. tuberculosis. [1] BTZ043 (1/4 MIC 0.375 ng/mL) in combination with TMC207 (1/4 MIC 20 ng/mL) has a stronger cidal effect on M. tuberculosis but not BTZ-resistant M. tuberculosis mutant than TMC207 alone at a concentration of 80 ng/mL. [2]

In vivo In a mouse model of chronic tuberculosis, administration of BTZ043 at 37.5 mg/kg or 300 mg/kg for 4 weeks reduces the bacterial burden in the lungs and spleens by 1 and 2 logs, respectively. [1]


Animal Research:[1]
- Collapse
  • Animal Models: BALB/c mice infected with a low bacillary load (~200 CFU) of M. tuberculosis H37Rv via aerosol
  • Dosages: 37.5 mg/kg, or 300 mg/kg
  • Administration: Oral gavage once daily
    (Only for Reference)

Solubility (25°C)

In vitro DMSO 22 mg/mL (50.99 mM)
Water Insoluble
Ethanol Insoluble
In vivo Add solvents to the product individually and in order(Data is from Selleck tests instead of citations):
0.5% CMC
For best results, use promptly after mixing.
15 mg/mL

* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.

Chemical Information

Molecular Weight 431.39


CAS No. 957217-65-1
Storage powder
in solvent
Synonyms N/A
Smiles CC1COC2(O1)CCN(CC2)C3=NC(=O)C4=C(S3)C(=CC(=C4)C(F)(F)F)[N+](=O)[O-]

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Dosage mg/kg Average weight of animals g Dosing volume per animal ul Number of animals
Step 2: Enter the in vivo formulation ()
% DMSO % % Tween 80 % ddH2O

Bio Calculators

Molarity Calculator

Molarity Calculator

Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:

Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)

  • Mass
    Molecular Weight

*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and SDS / COA (available on product pages).

Dilution Calculator

Dilution Calculator

Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:

Concentration (start) x Volume (start) = Concentration (final) x Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )

  • C1

* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / COA (available online).

The Serial Dilution Calculator Equation

  • Serial Dilutions

  • Computed Result

  • C1=C0/X C1: LOG(C1):
    C2=C1/X C2: LOG(C2):
    C3=C2/X C3: LOG(C3):
    C4=C3/X C4: LOG(C4):
    C5=C4/X C5: LOG(C5):
    C6=C5/X C6: LOG(C6):
    C7=C6/X C7: LOG(C7):
    C8=C7/X C8: LOG(C8):
Molecular Weight Calculator

Molecular Weight Calculator

Enter the chemical formula of a compound to calculate its molar mass and elemental composition:

Total Molecular Weight: g/mol

Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:

To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.

Definitions of molecular mass, molecular weight, molar mass and molar weight:

Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

Molarity Calculator

Mass Concentration Volume Molecular Weight

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3

If you have any other enquiries, please leave a message.

  • * Indicates a Required Field
Tags: buy BTZ043 Racemate | BTZ043 Racemate supplier | purchase BTZ043 Racemate | BTZ043 Racemate cost | BTZ043 Racemate manufacturer | order BTZ043 Racemate | BTZ043 Racemate distributor
Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID