Rigosertib (ON-01910)
For research use only.
Catalog No.S1362
25 publications

CAS No. 1225497-78-8
Rigosertib (ON-01910) is a non-ATP-competitive inhibitor of PLK1 with IC50 of 9 nM in a cell-free assay. It shows 30-fold greater selectivity against Plk2 and no activity to Plk3. Rigosertib inhibits PI3K/Akt pathway and activates oxidative stress signals. Rigosertib induces apoptosis in various cancer cells. Phase 3.
Purity & Quality Control
Choose Selective PLK Inhibitors
Biological Activity
Description | Rigosertib (ON-01910) is a non-ATP-competitive inhibitor of PLK1 with IC50 of 9 nM in a cell-free assay. It shows 30-fold greater selectivity against Plk2 and no activity to Plk3. Rigosertib inhibits PI3K/Akt pathway and activates oxidative stress signals. Rigosertib induces apoptosis in various cancer cells. Phase 3. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Targets |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro |
Rigosertib is non-ATP-competitive inhibitor to PLK1 with IC50 of 9 nM. Rigosertib also exhibits inhibition against PLK2, PDGFR, Flt1, BCR-ABL, Fyn, Src, and CDK1, with IC50 of 18-260 nM. Rigosertib shows cell killing activity against 94 different tumor cell lines with IC50 of 50-250 nM, including BT27, MCF-7, DU145, PC3, U87, A549, H187, RF1, HCT15, SW480, and KB cells. While in normal cells, such as HFL, PrEC, HMEC, and HUVEC, Rigosertib has little or no effect unless its concentration is greater than 5-10 μM. In HeLa cells, Rigosertib (100-250 nM) induces spindle abnormalities and apoptosis. [1] Rigosertib also inhibits several multidrug resistant tumor cell lines, including MES-SA, MES-SA/DX5a, CEM, and CEM/C2a, with IC50 of 50-100 nM. In DU145 cells, Rigosertib (0.25-5 μM) blocks cell cycle progression in G2/M phase, results in an accumulation of cells containing subG1 content of DNA, and activates apoptotic pathways. In A549 cells, Rigosertib (50 nM-0.5 μM) induces loss of viability and caspase 3/7 activation. [2] In a recent study, Rigosertib induces apoptosis in chronic lymphocytic leukemia (CLL) cells without toxicity against T-cells or normal B-cells. Rigosertib also abrogates the pro-survival effect of follicular dendritic cells on CLL cells and reduces SDF-1-induced migration of leukemic cells. [3] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cell Data |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assay |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vivo | In mouse xenograft models of Bel-7402, MCF-7, and MIA-PaCa cells, Rigosertib (250 mg/kg) markedly inhibits tumor growth. [1] Rigosertib (200 mg/kg) shows inhibition on tumor growth in a mouse xengraft model of BT20 cells. [2] |
Protocol
Kinase Assay:[1] |
- Collapse
In vitro enzyme assays for PLK1: Recombinant PLK1 (10 ng) is incubated with different concentrations of Rigosertib in a 15 µL reaction mixture (50 mM HEPES, 10 mM MgCl2, 1 mM EDTA, 2 mM Dithiothreitol, 0.01% NP-40 [pH 7.5]) for 30 min at room temperature. Kinase reactions are performed for 20 min at 30 °C in a volume of 20 µL (15 µL enzyme + inhibitor, 2 µL 1 mM ATP), 2 µL of γ32P-ATP (40 μCi), and 1 µL of recombinant Cdc25C (100 ng) or casein (1 μg) substrates. Reactions are terminated by boiling for 2 min in 20 µL of 2× Laemmli buffer. Phosphorylated substrates are separated by 18% SDS-PAGE. The gels are dried and exposed to X-ray film for 3-10 min. |
---|---|
Cell Research:[2] |
- Collapse
|
Animal Research:[1] |
- Collapse
|
Solubility (25°C)
In vitro | DMSO | 95 mg/mL (200.64 mM) |
---|---|---|
Water | 95 mg/mL (200.64 mM) | |
Ethanol | Insoluble | |
In vivo | Add solvents to the product individually and in order(Data is from Selleck tests instead of citations): water For best results, use promptly after mixing. |
95mg/mL |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 473.47 |
---|---|
Formula | C21H24NNaO8S |
CAS No. | 1225497-78-8 |
Storage |
powder in solvent |
Synonyms | N/A |
Smiles | COC1=C(C=C(C=C1)CS(=O)(=O)C=CC2=C(C=C(C=C2OC)OC)OC)NCC(=O)[O-].[Na+] |
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment) | ||||||||||
Dosage | mg/kg | Average weight of animals | g | Dosing volume per animal | ul | Number of animals | ||||
Step 2: Enter the in vivo formulation () | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
CalculateReset |
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: : mg drug pre-dissolved in μL DMSO (Master liquid concentration mg/mL,)
Method for preparing in vivo formulation:Take DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80,mix and clarify, next add μL ddH2O,mix and clarify.
1.Please make sure the liquid is clear before adding the next solvent.
2.Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Clinical Trial Information
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
---|---|---|---|---|---|---|
NCT04177498 | Not yet recruiting | Drug: Rigosertib Sodium|Other: Quality-of-Life Assessment | Recessive Dystrophic Epidermolysis Bullosa | Thomas Jefferson University|Onconova Therapeutics Inc. | January 1 2021 | Early Phase 1 |
NCT02075034 | Withdrawn | Drug: rigosertib | Myelodysplastic Syndrome | Onconova Therapeutics Inc. | May 2014 | Phase 1 |
NCT02030639 | Completed | Drug: rigosertib | Healthy | Onconova Therapeutics Inc. | January 2014 | Phase 1 |
NCT01928537 | Completed | Drug: rigosertib sodium | Myelodysplastic Syndromes|Refractory Anemia With Excess Blasts|Chronic Myelomonocytic Leukemia|Cytopenia | Onconova Therapeutics Inc. | August 2013 | Phase 3 |
NCT01807546 | Completed | Drug: rigosertib | Head and Neck Squamous Cell Carcinoma|Anal Squamous Cell Carcinoma|Lung Squamous Cell Carcinoma|Cervical Squamous Cell Carcinoma|Esophageal Squamous Cell Carcinoma|Skin Squamous Cell Carcinoma|Penile Squamous Cell Carcinoma | Onconova Therapeutics Inc. | March 2013 | Phase 2 |
NCT01168011 | Completed | Drug: rigosertib | Solid Tumor | Onconova Therapeutics Inc. | July 2010 | Phase 1 |
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.