b-AP15
For research use only.
Catalog No.S4920 Synonyms: NSC687852
10 publications

CAS No. 1009817-63-3
b-AP15 (NSC687852) is a deubiquitinases inhibitor for 19S proteasomes activity of Ub-AMC cleavage with IC50 of 2.1 μM.
1 Customer Review
-
A USP14 inhibitor directly inhibits OSCC cell proliferation and triggers apoptosis. (A-D) OSCC cells were treated with indicated doses of b-AP15 for 24 h. (A) Cell proliferation was monitored by CCK8 assay. b-AP15 dramatically decreased cancer cells viability in a dose-dependent manner (p < 0.01). All values represented means ± SD of three independent experiments and each was performed in triplicate. (B, C) Flow cytometry analysis indicated that b-AP15 triggered significant apoptosis of OSCC cells (p < 0.01). Data were obtained in more than three independent experiments. (D) Apoptosis-related proteins were examined by western blot analysis. Inhibition of USP14 with b-AP15 induced a massive increase of ubiquitinated proteins, which then triggered apoptosis of cancer cells, activating caspase 3 to induce cleavage of caspase 3 and PARP.
Int J Biochem Cell Biol, 2016, 79:350-359. . b-AP15 purchased from Selleck.
Purity & Quality Control
Choose Selective DUB Inhibitors
Biological Activity
Description | b-AP15 (NSC687852) is a deubiquitinases inhibitor for 19S proteasomes activity of Ub-AMC cleavage with IC50 of 2.1 μM. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Features | Not a general deubiquitinase inhibitor. Has minimal inhibition on recombinant and cytosolic nonproteasomal cysteine deubiquitinases. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Targets |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vitro |
b-AP15 inhibits the activity of two 19S regulatory-particle-associated deubiquitinases, ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14), resulting in accumulation of polyubiquitin. b-AP15 results in a dose-dependent accumulation of the UbG76V-YFP reporter with IC50 of 0.8 μM, indicating impaired proteasome degradation. b-AP15 (1 μM) results in rapid accumulation of polyubiquitinated proteins in human colon carcinoma HCT-116 cells. b-AP15 (2.2 μM) increases the amounts of the cyclin-dependent kinases CDKN1A and CDKNIB and the tumor suppressor TP53 in a dose-dependent manner without altering the amounts of ornithine decarboxylase 1 (ODC1) in HCT-116 cells. b-AP15 (1 μM) results in G2/M phase cell-cycle arrest in HCT-116 cells, consistent with the accumulation of cell-cycle inhibitors. b-AP15 treatment increases the number of hypodiploid cells and is associated with increased amounts of apoptotic markers, including activated caspase-3, caspase-cleaved poly-ADP ribose polymerase (PARP) and cytokeratin-18 (CK18). b-AP15 is more toxic to HCT-116 cells as compared to immortalized epithelial cells (hTERT-RPE1) or peripheral blood mononuclear cells. b-AP15 inhibits deubiquitinating activity using a variety of substrates, including Ub-AMC, Ub-GFP22, ubiquitinated p53-binding protein homolog (HDM2), and K48- and K63-linked ubiquitin tetramer chains. [1] b-AP15 is an inhibitor of the UPS that induced cell death via induction of the lysosomal apoptosis pathway in a cathepsin-D dependent manner. b-AP15 elicits characteristic UPS defects including the accumulation of ubiquitin conjugates and cell cycle inhibitors such as p21, p27 and the tumor suppressor p53. b-AP15 inhibits the deubiquitinase activity of both cysteine DUBs, with USP14 being slightly more sensitive than UCHL5. b-AP15 induces apoptosis in cells over-expressing the anti-apoptotic Bcl-2 protein and in cells lacking the p53 gene. [2] b-AP15 (1 μM) inhibits ATP-induced IL-1β release from LPS-primed peritoneal macrophages. b-AP15 (1 μM) reduces the levels of cell death induced by nigericin treatment in THP-1 cells. b-AP15 (1 μM) significantly reduces the numbers of ASC specks formed after nigericin treatment in LPS-primed THP-1 cells. [3] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cell Data |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In vivo | b-AP15 (5 mg/kg) shows significant antitumor activity in severe combined immunodeficiency (SCID) mice with FaDu squamous carcinoma xenografts. b-AP15 (5 mg/kg) significantly delays tumor onset in mice with HCT-116 colon carcinoma xenografts. [1] |
Protocol
Animal Research: |
- Collapse
|
---|
Solubility (25°C)
In vitro | DMSO | 48 mg/mL warmed (114.45 mM) |
---|---|---|
Water | Insoluble | |
Ethanol | Insoluble | |
In vivo | Add solvents to the product individually and in order(Data is from Selleck tests instead of citations): 4% DMSO+corn oil For best results, use promptly after mixing. |
1mg/mL |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 419.39 |
---|---|
Formula | C22H17N3O6 |
CAS No. | 1009817-63-3 |
Storage |
powder in solvent |
Synonyms | NSC687852 |
Smiles | C=CC(=O)N1CC(=CC2=CC=C(C=C2)[N+](=O)[O-])C(=O)C(=CC3=CC=C(C=C3)[N+](=O)[O-])C1 |
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment) | ||||||||||
Dosage | mg/kg | Average weight of animals | g | Dosing volume per animal | ul | Number of animals | ||||
Step 2: Enter the in vivo formulation () | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
CalculateReset |
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: : mg drug pre-dissolved in μL DMSO (Master liquid concentration mg/mL,)
Method for preparing in vivo formulation:Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80,mix and clarify, next add μL ddH2O,mix and clarify.
1.Please make sure the liquid is clear before adding the next solvent.
2.Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.