USP11 Rabbit mAb

Catalog No.: F2498

    1/

    Experiment Essentials

    WB
    Recommended SDS-PAGE separating gel concentration: 5%.
    Exposure time of at least 60s is recommended.

    Usage Information

    Dilution
    1:1000 - 1:10000
    1:10 - 1:300
    Application
    WB, IP
    Source
    Rabbit
    Reactivity
    Human, Mouse, Rat
    Storage Buffer
    PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN₃
    Storage (from the date of receipt)
    –20°C (avoid freeze-thaw cycles), 2 years
    Predicted MW
    110 kDa
    Positive Control Human testis; Human fetal kidney; Mouse brain; Rat brain; HEK293 cell; 293T cell; Jurkat cell; LNCaP cell; HeLa cell; HAP1 cell
    Negative Control

    Exprimental Methods

    WB

    Experimental Protocol:

     
    Sample preparation
    1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
    2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
    5. Remove a small volume of lysate to determine the protein concentration;
    6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
     
    Electrophoretic separation
    1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 5%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
    2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
     
    Transfer membrane
    1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
    2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
    3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
    4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
    Recommended conditions for wet transfer: 200 mA, 120 min.
    ( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
     
    Block
    1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
    2. Incubate the film in the blocking solution for 1 hour at room temperature;
    3. Wash the film with TBST for 3 times, 5 minutes each time.
     
    Antibody incubation
    1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
    2. Wash the film with TBST 3 times, 5 minutes each time;
    3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
    4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
     
    Antibody staining
    1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
    2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system. (Exposure time of at least 60s is recommended)

    Datasheet & SDS

    Biological Description

    Specificity

    USP11 Rabbit mAb recognizes endogenous levels of total USP11 protein.

    Synonym(s)
    UHX1, USP11, Ubiquitin carboxyl-terminal hydrolase 11, Deubiquitinating enzyme 11, Ubiquitin thioesterase 11, Ubiquitin-specific-processing protease 11
    Uniprot ID
    P51784
    Clone
    D17E15
    Background

    USP11 (Ubiquitin-Specific Protease 11) is a nuclear-localized deubiquitinating enzyme encoded on chromosome Xp11.23, with a molecular weight of ~105–110 kDa. It features an N-terminal DU module, composed of DUSP and UBL domains, followed by a catalytic protease domain with an internal UBL2 insertion, resulting in a monomeric protein with structural properties distinct from those of its homologs USP4 and USP15. USP11 specifically cleaves Lys63-, Lys6-, Lys11-, and Lys33-linked polyubiquitin chains, a specificity determined by its catalytic core and refined by an aspartate gatekeeper at the S1’ site. The enzyme’s activity is driven by a conserved Cys-His-Asp catalytic triad. USP11 plays a central role in homologous recombination-mediated DNA repair by stabilizing substrates such as BRCA2 and RanBPM. It also regulates the cell cycle and DNA damage response by stabilizing p21 in a p53-independent manner. Additionally, through interactions with regulatory proteins like RanBPM, USP11 influences processes including microtubule nucleation, transcriptional regulation, and immune signaling.

    References

    Tech Support

    Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

    Handling Instructions

    Tel: +1-832-582-8158 Ext:3
    If you have any other enquiries, please leave a message.

    * Indicates a Required Field

    Please enter your name.
    Please enter your email. Please enter a valid email address.
    Please write something to us.