RBL2 Rabbit mAb

Catalog No.: F1961

    • Lane 1: HT29
      Lane 2: C2C12
      Lane 3: Vero
    1/

    Experiment Essentials

    Subcellular Location: Nucleus.
    WB
    Recommending using RIPA/Nuclear Lysis Buffer to prepare lysates.
    Recommended SDS-PAGE separating gel concentration: 5%.

    Usage Information

    Dilution
    1:1000
    1:100
    1:50
    Application
    WB, IP, ChIP
    Source
    Rabbit
    Reactivity
    Human, Mouse, Rat, Monkey
    Storage Buffer
    PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN₃
    Storage (from the date of receipt)
    –20°C (avoid freeze-thaw cycles), 2 years
    Predicted MW
    130 kDa
    Positive Control HT-29; C2C12; H-4-II-E; 293; 3T3
    Negative Control 293 (transfected with 100 nM RBL2 siRNA I)

    Expression & Treatment Conditions

    Sample Treatment Conditions
    Vero Low expression
    293 Tansfection (100 nM RBL2 siRNA I)
    Click to view more sample data

    *For predicted expression levels of this protein in various human-derived cells and tissues, please refer to: http://www.proteinatlas.org

    Exprimental Methods

    WB
    Experimental Protocol:
     
    Sample preparation
    1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/Nuclear Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature or lyse it by sonication on ice, then incubate on ice for 30 minutes.
    2. Adherent cell: Aspirate the culture medium and transfer the cells into an EP tube. Wash the cells with ice-cold PBS twice. Add an appropriate volume of RIPA/Nuclear Lysis Buffer (containing Protease Inhibitor Cocktail), sonicate to lyse the cells, and incubate on ice for 30 minutes.
    3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice.Add an appropriate volume of RIPA/Nuclear Lysis Buffer (containing Protease Inhibitor Cocktail), sonicate to lyse the cells, and incubate on ice for 30 minutes.
    4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
    5. Remove a small volume of lysate to determine the protein concentration;
    6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
     
    Electrophoretic separation
    1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 5%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
    2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
     
    Transfer membrane
    1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
    2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
    3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
    4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
    Recommended conditions for wet transfer: 200 mA, 120 min.
    ( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
     
    Block
    1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
    2. Incubate the film in the blocking solution for 1 hour at room temperature;
    3. Wash the film with TBST for 3 times, 5 minutes each time.
     
    Antibody incubation
    1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
    2. Wash the film with TBST 3 times, 5 minutes each time;
    3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
    4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
     
    Antibody staining
    880. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
    2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

    Datasheet & SDS

    Biological Description

    Specificity

    RBL2 Rabbit mAb recognizes endogenous levels of total RBL2 protein. This antibody does not cross-react with the Rb or RBL1 proteins.

    Uniprot ID
    Q08999
    Clone
    G2F19
    Background

    Retinoblastoma-like protein 2 (RBL2, p130) is a member of the retinoblastoma (Rb) tumor suppressor family, which also includes Rb (p105) and retinoblastoma-like protein 1 (RBL1, p107). RBL2, like other Rb family proteins, contains a conserved binding pocket that interacts with critical regulatory proteins such as E2F transcription factors and those with an LXCXE motif. In quiescent G0 phase cells, RBL2 is predominantly active and hypophosphorylated, binding to E2F4 and E2F5 to form the DREAM complex, which represses transcription of genes necessary for S phase entry and mitosis. This repression prevents cell cycle progression. Upon growth factor stimulation, RBL2 becomes hyperphosphorylated by cyclin-dependent kinases (CDKs) and releases E2F factors, leading to transcriptional activation and cell cycle progression. RBL2 plays a crucial role in maintaining cellular senescence by remaining hypophosphorylated, which is essential for the stability of senescent cells.

    References

    Tech Support

    Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

    Handling Instructions

    Tel: +1-832-582-8158 Ext:3
    If you have any other enquiries, please leave a message.

    * Indicates a Required Field

    Please enter your name.
    Please enter your email. Please enter a valid email address.
    Please write something to us.