Phospho-AMPK α1/ AMPK α2 (Thr 183/ Thr 172) Rabbit mAb

Catalog No.: F1561

    • Lane 1: HEK-293
      Lane 2: Mouse heart
      Lane 3: Rat brain
    1/

    Experiment Essentials

    Subcellular Location: Cytoplasm, Nucleus.
    WB
    Recommending using RIPA/NP-40 Lysis Buffer to prepare lysates.

    Usage Information

    Dilution
    1:1000
    Application
    WB
    Source
    Rabbit
    Reactivity
    Human, Mouse, Rat, D. melanogaster
    Storage Buffer
    PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN₃
    Storage (from the date of receipt)
    –20°C (avoid freeze-thaw cycles), 2 years
    Predicted MW Observed MW
    64 kDa 64 kDa, 97 kDa
    *Why do the predicted and actual molecular weights differ?
    The following reasons may explain differences between the predicted and actual protein molecular weight.
    Positive Control fruit fly; mouse heart; rat brain; HEK-293; Molt-4
    Negative Control HEK-293 (treated with Lambda phosphatase)

    Exprimental Methods

    WB
    Experimental Protocol:
     
    Sample preparation
    1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail, Phosphatase Inhibitor Cocktail),and homogenize the tissue at a low temperature or lyse it by sonication on ice, then incubate on ice for 30 minutes.
    2. Adherent cell: Aspirate the culture medium and transfer the cells into an EP tube. Wash the cells with ice-cold PBS twice. Add an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail, Phosphatase Inhibitor Cocktail), sonicate to lyse the cells, and incubate on ice for 30 minutes.
    3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice.Add an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail, Phosphatase Inhibitor Cocktail), sonicate to lyse the cells, and incubate on ice for 30 minutes.
    4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
    5. Remove a small volume of lysate to determine the protein concentration;
    6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
     
    Electrophoretic separation
    1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 10%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
    2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
     
    Transfer membrane
    1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
    2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
    3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
    4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
    Recommended conditions for wet transfer: 200 mA, 120 min.
    ( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
     
    Block
    1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
    2. Incubate the film in the blocking solution ( recommending 5% BSA solution) for 1 hour at room temperature;
    3. Wash the film with TBST for 3 times, 5 minutes each time.
     
    Antibody incubation
    1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
    2. Wash the film with TBST 3 times, 5 minutes each time;
    3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
    4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
     
    Antibody staining
    911. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
    2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

    Datasheet & SDS

    Biological Description

    Specificity

    Phospho-AMPK α1/ AMPK α2 (Thr 183/ Thr 172) Rabbit mAb recognizes endogenous levels of total AMPK alpha 1 (phospho T183)/ AMPK alpha 2  (phospho T172) protein.

    Synonym(s)
    Phospho AMPK α1 (Thr 183), Phospho AMPK α2  (Thr 172)
    Uniprot ID
    Q13131
    Clone
    C21K7
    Background

    AMP-activated protein kinase (AMPK) is a highly conserved enzyme found across species from yeast to plants and animals, playing a crucial role in maintaining energy balance within cells. AMPK functions as a heterotrimeric complex comprising a catalytic α subunit and regulatory β and γ subunits, which are encoded by multiple genes (α1, α2; β1, β2; γ1, γ2, γ3). The kinase is activated in response to an increased AMP/ATP ratio, which occurs during cellular and environmental stress conditions such as heat shock, hypoxia, and ischemia. AMPK and mechanistic target of rapamycin complex 1 (mTORC1) are key metabolic kinases that synchronize nutrient availability with cell growth. AMPK inhibits mTORC1, while mTORC1, in turn, phosphorylates AMPK at specific sites (S345/7) on both α isoforms. AMPK not only regulates fatty acid and glycogen metabolism but also influences protein synthesis and cell growth through the EF2 and TSC2/mTOR pathways and modulates blood flow via eNOS/nNOS signaling. Activation of AMPK requires phosphorylation of the α subunit at Thr172, a modification carried out by the tumor suppressor LKB1 in conjunction with accessory proteins STRAD and MO25.

    References

    Tech Support

    Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

    Handling Instructions

    Tel: +1-832-582-8158 Ext:3
    If you have any other enquiries, please leave a message.

    * Indicates a Required Field

    Please enter your name.
    Please enter your email. Please enter a valid email address.
    Please write something to us.