XL147 analogue
Catalog No.S1118 Synonyms: SAR245408

Molecular Weight(MW): 448.52
XL147 analogue is a selective and reversible class I PI3K inhibitor for PI3Kα/δ/γ with IC50 of 39 nM/36 nM/23 nM in cell-free assays, less potent to PI3Kβ. Phase 1/2.
Purity & Quality Control
Choose Selective PI3K Inhibitors
Biological Activity
Description | XL147 analogue is a selective and reversible class I PI3K inhibitor for PI3Kα/δ/γ with IC50 of 39 nM/36 nM/23 nM in cell-free assays, less potent to PI3Kβ. Phase 1/2. | ||||||||
---|---|---|---|---|---|---|---|---|---|
Targets |
|
||||||||
In vitro |
XL147 inhibits class I PI3K isoforms in an ATP-competitive manner. In a panel of HER2-overexpressing human breast cancer cell lines, treatment with XL147 abrogates AKT and S6 phosphorylation but also induces the expression and phosphorylation of HER3 and other RTKs. In HER2+ cells, phosphorylation of HER3 is maintained by the HER2 tyrosine kinase, leading to partial recovery of phosphorylated AKT (pAKT) and thereby limiting the antitumor action of XL 147. In addition, knockdown of HER3 or treatment with the anti-HER2 agents trastuzumab or lapatinib sensitizes HER2+ breast cancer cells to XL147 in vitro and in vivo. Treatment with XL147 inhibits the monolayer growth of all tested cell lines, including BT474, HCC1937 et al. in a dose-dependent manner. The main effect of XL147 is inhibition of cell proliferation. XL147 induces cell death at the concentration of 20 μM. Treatment with XL147 leads to dose-dependent inhibition of PI3K. Consistent with the inhibition of cell proliferation, XL147 induces a reduction in cyclin D1 and pRB and an increase in levels of the CDK inhibitor p27KIPI but no detectable change in levels off total or cleaved poly (ADP-ribose) polymerase (PARP). Treatment with XL147 leads to a dose-dependent reduction in pAKTS473/T308 and pS6S240/244. Surprisingly, XL147 also triggers up-regulation of total HER3 and/or pHER3Y1289 levels. In HER2-overexpressing cells, inhibition of PI3K is followed by up-regulation of expression and phosphorylation of multiple receptor tyrosine kinases, including HER3. Knockdown of FoxO1 and FoxO3a transcription factors prevents the induction of HER3, InsR, IGF1R, and FGFR2 mRNAs upon inhibition of PI3K. In HER2+ cells, knockdown of HER3 with siRNA or cotreatment with the HER2 inhibitors trastuzumab or lapatinib enhances XL147-induced cell death and inhibition of pAKT and pS6. [2] |
||||||||
In vivo | Athymic mice with BT474 xenografts are randomly treated with XL147, lapatinib, trastuzumab, or XL147 plus each HER2 antagonist. Each monotherapy significantly inhibtis tumor growth with trastuzumab being the only agent that induced a complete tumor regression in one of eight mice. Both combinations are superior to the respective drugs given alone. Notably, the combination of trastuzumab and XL147, but not lapatinib and XL147, induces a complete tumor response in three of eight mice. There is no marked drug-related toxicity in any of the treatment arms. The combination of XL147 plus trastuzumab prevents pHER3 more potently than any of the other treatments. In good agreement with differences in tumor growth among treatment arms, nuclear pAKT is lower in tumors treated with XL147 plus lapatinib or XL147 plus trastuzumab compared with tumors treated with single agents. Of all three single drugs, XL147 is the only one shown statistically to repress nuclear pAKT levels. There are no detectable changes in cytoplasmic pAKT levels. Combined inhibition of HER2 and PI3K in HER2-dependent xenografts is required to maximally inhibit signaling output of the PI3K/AKT pathway. [2] |
Protocol
Cell Research: |
+ Expand
|
---|---|
Animal Research: |
+ Expand
|
Solubility (25°C)
In vitro | DMSO | 3 mg/mL (6.68 mM) |
---|---|---|
Water | Insoluble | |
Ethanol | Insoluble | |
In vivo | Add solvents to the product individually and in order: 30% PEG400+0.5% Tween80+5% propylene glycol For best results, use promptly after mixing. |
15 mg/mL |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 448.52 |
---|---|
Formula | C21H16N6O2S2 |
CAS No. | 956958-53-5 |
Storage | powder |
Synonyms | SAR245408 |
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Clinical Trial Information
NCT Number | Recruitment | Conditions | Sponsor/Collaborators | Start Date | Phases |
---|---|---|---|---|---|
NCT01943838 | Completed | Neoplasm Malignant | Sanofi | October 2013 | Phase 1 |
NCT01587040 | Active, not recruiting | Neoplasm Malignant | Sanofi | July 2012 | Phase 1|Phase 2 |
NCT01436565 | Completed | Solid Tumor Cancers | Sanofi|Merrimack Pharmaceuticals | November 2011 | Phase 1 |
NCT01392924 | Completed | Neoplasm Malignant | Sanofi | August 2011 | Phase 1 |
NCT01357330 | Completed | Solid Tumors | Sanofi | May 2011 | Phase 1 |
NCT01240460 | Completed | Glioblastoma|Astrocytoma, Grade IV | Sanofi | January 2011 | Phase 1 |
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.