A66

Catalog No.S2636

A66 Chemical Structure

Molecular Weight(MW): 393.53

A66 is a potent and specific p110α inhibitor with IC50 of 32 nM in a cell-free assay, >100 fold selectivity for p110α over other class-I PI3K isoforms.

Size Price Stock Quantity  
In DMSO USD 270 In stock
USD 170 In stock
USD 320 In stock
USD 970 In stock
Bulk Discount

Free Overnight Delivery on orders over $ 500
Next day delivery by 10:00 a.m. Order now.

3 Customer Reviews

  • (C) Western blot analyses of pAkt in MMTV-MT tumor derived cells treated with various PI3K inhibitors (in micromolar) as indicated following growth factor starvation. (D) Western blot analyses of pAkt in MMTV-NeuT tumor-derived cells treated with various PI3K inhibitors (in micromolar) as indicated. (*) P < 0.01; (**) P < 0.001 (Student’s t-test).

    Genes Dev, 2012, 26: 1573–1586. A66 purchased from Selleck.

    (A) Tumor volumes of MMTV-MT tumor transplants treated with various PI3K inhibitors as indicated (n = 12 per group). (B) Tumor volumes of MMTV-NeuT tumor transplants treated with PI3K inhibitors as indicated (control, n = 20; GDC-0941, n = 20; A66, n = 16; and TGX221, n = 16). (*) P < 0.01; (***) P < 0.0001 (Student’s t-test).

    Genes Dev, 2012, 26: 1573–1586. A66 purchased from Selleck.

  • After starved in serum-free medium for 24h,A549 cells incubated with the indicated concentrations of A66 for 3h,followed by 20-minute stimolation of 100ng/ml EGF.

    Dr. Zhang of Tianjin Medical University. A66 purchased from Selleck.

Purity & Quality Control

Choose Selective PI3K Inhibitors

Biological Activity

Description A66 is a potent and specific p110α inhibitor with IC50 of 32 nM in a cell-free assay, >100 fold selectivity for p110α over other class-I PI3K isoforms.
Features Highly selective for the p110α isoform.
Targets
p110α [1]
(Cell-free assay)
PI4Kβ [1]
(Cell-free assay)
C2β [1]
(Cell-free assay)
p110δ [1]
(Cell-free assay)
p110γ [1]
(Cell-free assay)
32 nM 236 nM 462 nM >1.25 μM 3.48 μM
In vitro

In addition to the wild-type p110α, A66 also potently inhibits the oncogenic forms of p110α such as p110α E545K and p110α H1047R with IC50 of 30 nM and 43 nM, respectively. Unlike PIK-75, A66 displays >100 fold selectivity for p110α over other class-I PI3K isoforms. Among the class-II PI3Ks, class-III PI3K and PI4Ks, A66 only exhibits limited cross-reactivity with the class-II PI3K PI3KC2β and the PI4Kβ isoform of PI4K with IC50 of 462 nM and 236 nM, respectively. A66 exhibits no inhibitory activity against other lipid kinases or the related kinases DNA-PK and mTOR. A66 has a higher degree of specificity compared with PIK-75 when tested at 10 μM against two large panels of 110 protein kinases and 318 kinases. Inhibition of p110α alone by A66 treatment is sufficient to block insulin signalling to Akt/PKB in certain cell lines that harbor H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. [1] A66 treatment at 0.7 μM induces a 75-80% reduction in focus formation by the highly transforming p85α iSH2 mutants KS459delN, DKRMN-S560del, and K379E, and reduces the phosphorylation of Akt on T308 by all p85 mutants. [2]

In vivo A single dose of A66 at 100 mg/kg induces a profound reduction in the phosphorylation of Akt/PKB and p70 S6 kinase, but not of ERK, in SK-OV-3 tumour tissue in vivo at both 1 hour and 6 hours after dosing. A66 dosed at 100 mg/kg once daily (QD) for 21 days or 75 mg/kg twice daily (BID) for 16 days induces a significant delay in growth of SK-OV-3 xenografted tumors with average TGI of 45.9% and 29.9%, respectively, which is even greater than that induced by the well-established pan-PI3K inhibitor BEZ-235. QD dosing of A66 in the HCT-116 xenograft model also induces a significant reduction in tumour volume with TGI of 77.2%, but causes a non-significant reduction in tumor volume in the U87MG xenograft model. [1] Administration of A66 at 10 mg/kg in male CD1 mice induces significant impairments in the ITT (insulin tolerance test) and GTT (glucose tolerance test), and an increase in glucose production during a PTT (pyruvate tolerance test), almost to the same level as the pan-PI3K inhibitors. [3]

Protocol

Animal Research:[1]
+ Expand
  • Animal Models: Age-matched specific pathogen-free Rag1-/- or NIH-III mice inoculated subcutaneously with U87MG, SK-OV-3 or HCT-116 cells
  • Formulation: Formulated in 20% 2-hydroxypropyl-β-cyclodextrin in water
  • Dosages: 100 mg/kg once daily (QD) or 75 mg/kg twice daily (BID)
  • Administration: Intraperitoneal injection
    (Only for Reference)

Solubility (25°C)

In vitro DMSO 79 mg/mL (200.74 mM)
Ethanol 1 mg/mL (2.54 mM)
Water slightly soluble or insoluble
In vivo 15% Captisol 8 mg/mL

* 1 mg/ml means slightly soluble or insoluble.
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.

Chemical Information

Molecular Weight 393.53
Formula

C17H23N5O2S2

CAS No. 1166227-08-2
Storage powder
in solvent
Synonyms N/A

Bio Calculators

Molarity Calculator

Molarity Calculator

Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

  • Mass
    Concentration
    Volume
    Molecular Weight

*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).

Dilution Calculator

Dilution Calculator

Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:

Concentration (start) x Volume (start) = Concentration (final) x Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )

  • C1
    V1
    C2
    V2

* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).

The Serial Dilution Calculator Equation

  • Serial Dilutions

  • Computed Result

  • C1=C0/X C1: LOG(C1):
    C2=C1/X C2: LOG(C2):
    C3=C2/X C3: LOG(C3):
    C4=C3/X C4: LOG(C4):
    C5=C4/X C5: LOG(C5):
    C6=C5/X C6: LOG(C6):
    C7=C6/X C7: LOG(C7):
    C8=C7/X C8: LOG(C8):
Molecular Weight Calculator

Molecular Weight Calculator

Enter the chemical formula of a compound to calculate its molar mass and elemental composition:

Total Molecular Weight: g/mol

Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:

To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.

Definitions of molecular mass, molecular weight, molar mass and molar weight:

Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

Molarity Calculator

Mass Concentration Volume Molecular Weight

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3

If you have any other enquiries, please leave a message.

  • * Indicates a Required Field

PI3K Signaling Pathway Map

PI3K Inhibitors with Unique Features

Related PI3K Products

Tags: buy A66 | A66 supplier | purchase A66 | A66 cost | A66 manufacturer | order A66 | A66 distributor
×
Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID