Cy7

Synonyms: Sulfo-Cyanine7

Cy7 (Sulfo-Cyanine7) is a fluorescence labelling agent, used to label proteins, antibodies, peptides, and oligonucleotides.

Cy7 Chemical Structure

Cy7 Chemical Structure

CAS: 943298-08-6

Purity & Quality Control

Batch: E286401 DMSO] 100 mg/mL] false] Water] Insoluble] false] Ethanol] Insoluble] false Purity: 99.41%
99.41

Cy7 Related Products

Biological Activity

Description Cy7 (Sulfo-Cyanine7) is a fluorescence labelling agent, used to label proteins, antibodies, peptides, and oligonucleotides.
In vitro
In vitro

1.Protein Preparetion
1) In order to obtain the best labeling effect, please prepare the protein (antibody) concentration as 2 mg/mL.
2) The pH value of protein solution shall be 8.5±0.5. If the pH is lower than 8.0, 1 M sodium bicarbonate shall be used for adjustment.
3) If the protein concentration is lower than 2 mg/mL, the labeling efficiency will be greatly reduced. In order to obtain the best labeling efficiency, it is recommended that the final protein concentration range is 2-10 mg/mL.
4) The protein must be in the buffer without primary amine (such as Tris or glycine) and ammonium ion, otherwise the labeling efficiency will be affected.
2.Dye Preparation (Example for CY3-NHS ester)
Add anhydrous DMSO into the vial of CY3-NHS ester to make a 10 mM stock solution. Mix well by pipetting or vortex.
3.Calculation of dye dosage
The amount of CY3-NHS ester required for reaction depends on the amount of protein to be labeled, and the optimal molar ratio of CY3-NHS ester to protein is about 10.
Example: assuming the required marker protein is 500 μL 2 mg/mL IgG (MW=150,000), use 100 μL DMSO dissolve 1 mg CY3-NHS ester, the required CY3-NHS ester volume is 5.05 μL, and the detailed calculation process is as follows:
1) mmol (IgG) = mg/mL (IgG) ×mL (IgG) / MW (IgG) =2 mg/mL × 0.5 mL / 150,000 mg/mmol= 6.7×10-6 mmol
2) mmol (CY3-NHS ester) = mmol (IgG) × 10 = 6.7×10-6 mmol×10 = 6.7 × 10-5 mmol
3) μL (CY3-NHS ester) = mmol (CY3-NHS ester) ×MW (CY3-NHS ester) / mg/μL (CY3-NHS ester) = 6.7 ×10-5 mmol ×753.88 mg/mmol / 0.01 mg/μL = 5.05 μL (CY3-NHS ester)
4.Run conjugation reaction
1) A good volume of freshly prepared 10 mg/mL CY3-NHS ester is slowly added to 0.5 mL protein sample
In solution, gently shake to mix, then centrifuge briefly to collect the sample at the bottom of the reaction tube. Don'tmix well to prevent protein samples from denaturation and inactivation.
2) The reaction tubules were placed in a dark place and incubated gently at room temperature for 60 minutes at intervals.For 10-15 minutes, gently reverse the reaction tubules several times to fully mix the two reactants and raise the bar efficiency.
5.Purify the conjugation
The following protocol is an example of dye-protein conjugate purification by using a SepHadex G-25 column.
1) Prepare SepHadex G-25 column according to the manufacture instruction.
2) Load the reaction mixture (From ""Run conjugation reaction"") to the top of the SepHadex G-25 column.
3) Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
4) Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate.

Chemical Information & Solubility

Molecular Weight 682.85 Formula

C35H42N2O8S2

CAS No. 943298-08-6 SDF --
Storage (From the date of receipt) 3 years -20°C powder

In vitro
Batch:

DMSO : 100 mg/mL ( (146.44 mM); Moisture-absorbing DMSO reduces solubility. Please use fresh DMSO.)

Water : Insoluble

Ethanol : Insoluble


Molecular Weight Calculator

In vivo
Batch:

Add solvents to the product individually and in order.


In vivo Formulation Calculator

Preparing Stock Solutions

Molarity Calculator

Mass Concentration Volume Molecular Weight

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.

* Indicates a Required Field

Please enter your name.
Please enter your email. Please enter a valid email address.
Please write something to us.
Tags: buy Cy7 | Cy7 supplier | purchase Cy7 | Cy7 cost | Cy7 manufacturer | order Cy7 | Cy7 distributor