BTZ043 Racemate

BTZ043 racemate is a decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) inhibitor acting as a new antimycobacterial agent that kill Mycobacterium tuberculosis.

BTZ043 Racemate Chemical Structure

BTZ043 Racemate Chemical Structure

CAS: 957217-65-1

Selleck's BTZ043 Racemate has been cited by 6 publications

Purity & Quality Control

Batch: Purity: 99.14%
99.14

BTZ043 Racemate Related Products

Choose Selective Bacterial Inhibitors

Biological Activity

Description BTZ043 racemate is a decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) inhibitor acting as a new antimycobacterial agent that kill Mycobacterium tuberculosis.
Features Greater activity against M. tuberculosis than EMB.
Targets
DprE1 [1]
In vitro
In vitro By targeting decaprenylphosphoryl-β-D-ribose 2'-epimerase, BTZ043 abolishes the formation of decaprenylphosphoryl arabinose, leading to cell lysis and death of Mycobacterium tuberculosis. BTZ043 displays similar activity against all clinical isolates of M. tuberculosis, including multidrug-resistant and extensively drug-resistant strains. BTZ043 displays significant activity against M. tuberculosis H37Rv and Mycobacterium smegmatis with MIC of 1 ng/mL (2.3 nM) and 4 ng/mL (9.2 nM), respectively, which is more potent than those of the existing tuberculosis (TB) drugs isoniazid (INH) and ethambutol (EMB) with MIC of 0.02-0.2 μg/mL and 1-5 μg/mL, respectively. BTZ043 is less effective in two different model systems (auxotrophy and starvation) involving metabolically inert M. tuberculosis, indicating that BTZ043 blocks a step in active metabolism similar to isoniazid (INH). BTZ043 treatment in M. smegmatis cells decreases the growth rate rapidly followed by a swelling of the poles and lysis of the cells after a few hours, which is similar but delayed in M. tuberculosis. [1] BTZ043 (1/4 MIC 0.375 ng/mL) in combination with TMC207 (1/4 MIC 20 ng/mL) has a stronger cidal effect on M. tuberculosis but not BTZ-resistant M. tuberculosis mutant than TMC207 alone at a concentration of 80 ng/mL. [2]
In Vivo
In vivo In a mouse model of chronic tuberculosis, administration of BTZ043 at 37.5 mg/kg or 300 mg/kg for 4 weeks reduces the bacterial burden in the lungs and spleens by 1 and 2 logs, respectively. [1]
Animal Research Animal Models BALB/c mice infected with a low bacillary load (~200 CFU) of M. tuberculosis H37Rv via aerosol
Dosages 37.5 mg/kg, or 300 mg/kg
Administration Oral gavage once daily

Chemical Information & Solubility

Molecular Weight 431.39 Formula

C17H16F3N3O5S

CAS No. 957217-65-1 SDF Download BTZ043 Racemate SDF
Smiles CC1COC2(O1)CCN(CC2)C3=NC(=O)C4=C(S3)C(=CC(=C4)C(F)(F)F)[N+](=O)[O-]
Storage (From the date of receipt)

In vitro
Batch:

DMSO : 22 mg/mL ( (50.99 mM); Moisture-absorbing DMSO reduces solubility. Please use fresh DMSO.)

Water : Insoluble

Ethanol : Insoluble


Molecular Weight Calculator

In vivo
Batch:

Add solvents to the product individually and in order.


In vivo Formulation Calculator

Preparing Stock Solutions

Molarity Calculator

Mass Concentration Volume Molecular Weight

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.

* Indicates a Required Field

Please enter your name.
Please enter your email. Please enter a valid email address.
Please write something to us.
Tags: buy BTZ043 Racemate | BTZ043 Racemate supplier | purchase BTZ043 Racemate | BTZ043 Racemate cost | BTZ043 Racemate manufacturer | order BTZ043 Racemate | BTZ043 Racemate distributor