research use only

Allitinib tosylate EGFR inhibitor

Cat.No.S2185

Allitinib tosylate (AST-1306 TsOH, AST-6) is a novel irreversible inhibitor of EGFR and ErbB2 with IC50 of 0.5 nM and 3 nM, also effective in mutation EGFR T790M/L858R, more potent to ErbB2-overexpressing cells, 3000-fold selective for ErbB family than other kinases.
Allitinib tosylate EGFR inhibitor Chemical Structure

Chemical Structure

Molecular Weight: 621.08

Jump to

Quality Control

Batch: S218501 DMSO]124 mg/mL]false]Water]Insoluble]false]Ethanol]Insoluble]false Purity: 99.93%
99.93

Cell Culture, Treatment & Working Concentration

Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID
A431 cells  Proliferation assay 72 h Antiproliferative activity against human A431 cells over-expressing EGFR gene after 72 hrs by SRB assay, IC50=0.2 μM 22227214
NCI-H1975 cells Proliferation assay 72 h Antiproliferative activity against human NCI-H1975 cells over-expressing EGFR mutant gene after 72 hrs by SRB assay, IC50=0.7 μM 22227214
A549 cells Proliferation assay 72 h Antiproliferative activity against human A549 cells over-expressing EGFR gene after 72 hrs by SRB assay, IC50=6.8 μM 22227214
TC32 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells 29435139
DAOY qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells 29435139
SJ-GBM2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells 29435139
A673 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells 29435139
SK-N-MC qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells 29435139
BT-37 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells 29435139
NB-EBc1 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells 29435139
U-2 OS qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells 29435139
Saos-2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells 29435139
SK-N-SH qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells 29435139
NB1643 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells 29435139
LAN-5 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells 29435139
BT-12 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells 29435139
Rh18 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells 29435139
OHS-50 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells 29435139
RD qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells 29435139
MG 63 (6-TG R) qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells 29435139
Rh41 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells 29435139
NB1643 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells 29435139
A673 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells) 29435139
SK-N-MC qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells 29435139
BT-12 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells 29435139
LAN-5 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells 29435139
DAOY qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells 29435139
NB-EBc1 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells 29435139
SJ-GBM2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells 29435139
BT-37 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells 29435139
TC32 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells 29435139
MG 63 (6-TG R) qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells 29435139
Rh41 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells 29435139
RD qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells 29435139
Rh18 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells 29435139
Saos-2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells 29435139
OHS-50 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells 29435139
SK-N-SH qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells 29435139
Click to View More Cell Line Experimental Data

Solubility

In vitro
Batch:

DMSO : 124 mg/mL (199.65 mM)
(Moisture-contaminated DMSO may reduce solubility. Use fresh, anhydrous DMSO.)

Water : Insoluble

Ethanol : Insoluble

Molarity Calculator

Mass Concentration Volume Molecular Weight
Dilution Calculator Molecular Weight Calculator

In vivo
Batch:

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg
g
μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO
%
% Tween 80
% ddH2O
% DMSO
+
%

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Chemical Information, Storage & Stability

Molecular Weight 621.08 Formula

C24H18ClFN4O2,C7H8O3S

Storage (From the date of receipt)
CAS No. 1050500-29-2 Download SDF Storage of Stock Solutions

Synonyms AST-1306 TsOH, AST-6 Smiles CC1=CC=C(C=C1)S(=O)(=O)O.C=CC(=O)NC1=CC2=C(C=C1)N=CN=C2NC3=CC(=C(C=C3)OCC4=CC(=CC=C4)F)Cl

Mechanism of Action

Targets/IC50/Ki
EGFR
(Cell-free assay)
0.5 nM
ErbB4
(Cell-free assay)
0.8 nM
ErbB2
(Cell-free assay)
3.0 nM
EGFR (T790M/L858R)
(Cell-free assay)
12 nM
In vitro
AST-1306 also ErB2 and EGFR T790M/L858R double mutant. AST-1306 is approximately 500-fold more potent than lapatinib and more than 3000-fold selective for ErbB family kinases over other kinase families including PDGFR, KDR and c-Met. AST-1306 might covalently bind to specific amino acid residues of EGFR and ErbB2. AST-1306 acts in a concentration dependent manner to significantly inhibit the growth of HIH3T3-EGFR T790M/L858R cells. AST-1306 effectively suppresses EGFR phosphorylation in HIH3T3-EGFR T790M/L858R cells. Moreover, AST-1306 blocks the growth of NCI-H1975 cells that harbor the EGFR T790M/L858R mutation in a concentration-dependent manner. AST-1306 blocks phosphorylation of EGFR and downstream pathways as well. In addition, AST-1306 dose-dependently and markedly inhibits EGF-induced EGFR phosphorylation in A549 cells. AST-1306 inhibits the phosphorylation of EGFR and ErbB2, and downstream signaling in human cancer cells including A549 cells, Calu-3 cells and SK-OV-3 cells.
Kinase Assay
Tyrosine kinase assays
The tyrosine kinase activities are determined in 96-well ELISA plates precoated with 20 μg/mL Poly (Glu,Tyr)4:1. First, 80 μL of 5 μM ATP solution diluted in kinase reaction buffer (50 mM HEPES pH 7.4, 20 mM MgCl2, 0.1 mM MnCl2, 0.2 mM Na3VO4, 1 mM DTT) is added to each well. Various concentrations of AST-1306 diluted in 10 μL of 1% DMSO (v/v) are then added to each reaction well, with 1% DMSO (v/v) used as the negative control. Subsequently, the kinase reaction is initiated by the addition of purified tyrosine kinase proteins diluted in 10 μL of kinase reaction buffer solution. Experiments at each concentration are performed in duplicate. After incubation for 60 min at 37 °C, the plate is washed three times with phosphate buffered saline (PBS) containing 0.1% Tween 20 (T-PBS). Next, 100 μL anti-phosphotyrosine antibody (PY99, 1:500 dilution) diluted in T-PBS containing 5 mg/mL BSA is added. After 30 min incubation at 37 °C, the plate is washed three times as before. Horseradish peroxidase-conjugated goat anti-mouse IgG (100 μL) diluted 1:2000 in T-PBS containing 5 mg/mL BSA is added. The plate is reincubated at 37 °C for 30 min, and then washed with PBS. Finally, 100 μL of a solution containing 0.03 % H2O2 and 2 mg/mL o-phenylenediamine in 0.1 M citrate buffer, pH 5.5, is added and samples are incubated at room temperature until color emerged. The reaction is terminated by the addition of 50 μL of 2 M H2SO4, and the plate is read using a multi-well spectrophotometer at 490 nm. The inhibition rate (%) is calculated using the following equation: [1-(A490 treated /A490 control)] ×100%. IC50 values are determined from the results of at least three independent tests and calculated by Logit method.
In vivo
Twice daily oral administration of AST-1306 gives rise to a dramatic prevention of tumor growth in SK-OV-3 and Calu-3 xenograft models. In SK-OV-3 models, tumors nearly disappears after treatment with AST-1306 for 7 days. In contrast, AST-1306 only slightly inhibits the growth of tumor in HO-8910 and A549 xenograft models. Therefore, the antitumor efficacy of AST-1306 is greater in ErbB2-overexpressing tumor models than in models expressing low levels of ErbB2. AST-1306 is well tolerated. Lapatinib displays antitumor activity in these ErbB2-overexpressing tumor models, but AST-1306 is more efficacious than lapatinib in the SK-OV-3 xenograft tumor model when given at the same dose and schedule. In addition, oral administration of AST-1306 twice daily for 3 weeks dramatically suppresses the growth of tumor in the FVB-2/Nneu models. After treatment for 11 days, tumors almost completely disappears. The body weights of the mice reduces by less than 20% during treatment.
References

Tech Support

Handling Instructions

Tel: +1-832-582-8158 Ext:3

If you have any other enquiries, please leave a message.

Signaling Pathway Map