Ritonavir
For research use only.
Catalog No.S1185 Synonyms: ABT-538, A 84538
19 publications

CAS No. 155213-67-5
Ritonavir (ABT-538, A 84538) is a Cytochrome P450 3A and Protease Inhibitor; Also inhibits Cytochrome P450 2D6, P-Glycoprotein and induces Cytochrome P450 2C19, Cytochrome P450 1A2, Cytochrome P450 2C9, Cytochrome P450 2B6 and UDP Glucuronosyltransferases. Ritonavir induces apoptosis.
Purity & Quality Control
Choose Selective HIV Protease Inhibitors
Biological Activity
Description | Ritonavir (ABT-538, A 84538) is a Cytochrome P450 3A and Protease Inhibitor; Also inhibits Cytochrome P450 2D6, P-Glycoprotein and induces Cytochrome P450 2C19, Cytochrome P450 1A2, Cytochrome P450 2C9, Cytochrome P450 2B6 and UDP Glucuronosyltransferases. Ritonavir induces apoptosis. | ||
---|---|---|---|
Targets |
|
||
In vitro |
Ritonavir is a very potent inhibitor of CYP3A4 mediated testosterone 6β-hydroxylation with mean Ki of 19 nM and also inhibits tolbutamide hydroxylation with IC50 of 4.2 μM. [1] Ritonavir is found to be a potent inhibitor of CYP3A-mediated biotransformations (nifedipine oxidation with IC50 of 0.07 mM, 17alpha-ethynylestradiol 2-hydroxylation with IC50 of 2 mM; terfenadine hydroxylation with IC50 of 0.14 mM). Ritonavir is also found to be an inhibitor of the reactions mediated by CYP2D6 (IC50 = 2.5 mM) and CYP2C9/10 (IC50 = 8.0 mM). [2] Ritonavir results in an increase in cell viability in uninfected human PBMC cultures. Ritonavir markedly decreases the susceptibility of PBMCs to apoptosis correlated with lower levels of caspase-1 expression, decreases in annexin V staining, and reduces caspase-3 activity in uninfected human PBMC cultures. Ritonavir inhibits induction of tumor necrosis factor (TNF) production by PBMCs and monocytes in a time- and dose-dependent manner at nontoxic concentrations. [3] Ritonavir inhibits p-glycoprotein-mediated extrusion of saquinavir with an IC50 of 0.2 μM, indicating a high affinity of ritonavir for p-glycoprotein. [4] Ritonavir inhibits human liver microsomal metabolism of ABT-378 potently with Ki of 13 nM. Ritonavir combined with ABT-378 (at 3:1 and 29:1 ratios) inhibits CYP3A (IC50 = 1.1 and 4.6 μM), albeit less potently than Ritonavir (IC50 = 0.14 μM). [5] |
Protocol
Solubility (25°C)
In vitro | DMSO | 100 mg/mL (138.7 mM) |
---|---|---|
Ethanol | 3 mg/mL (4.16 mM) | |
Water | Insoluble | |
In vivo | Add solvents to the product individually and in order(Data is from Selleck tests instead of citations): 30% PEG400+0.5% Tween80+5% propylene glycol For best results, use promptly after mixing. |
30 mg/mL |
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
Chemical Information
Molecular Weight | 720.94 |
---|---|
Formula | C37H48N6O5S2 |
CAS No. | 155213-67-5 |
Storage |
powder in solvent |
Synonyms | ABT-538, A 84538 |
Smiles | CC(C)C1=NC(=CS1)CN(C)C(=O)NC(C(C)C)C(=O)NC(CC2=CC=CC=C2)CC(C(CC3=CC=CC=C3)NC(=O)OCC4=CN=CS4)O |
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment) | ||||||||||
Dosage | mg/kg | Average weight of animals | g | Dosing volume per animal | ul | Number of animals | ||||
Step 2: Enter the in vivo formulation () | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
CalculateReset |
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: : mg drug pre-dissolved in μL DMSO (Master liquid concentration mg/mL,)
Method for preparing in vivo formulation:Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80,mix and clarify, next add μL ddH2O,mix and clarify.
1.Please make sure the liquid is clear before adding the next solvent.
2.Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
Bio Calculators
Molarity Calculator
Calculate the mass, volume or concentration required for a solution. The Selleck molarity calculator is based on the following equation:
Mass (mg) = Concentration (mM) × Volume (mL) × Molecular Weight (g/mol)
*When preparing stock solutions, please always use the batch-specific molecular weight of the product found on the via label and MSDS / COA (available on product pages).
Dilution Calculator
Calculate the dilution required to prepare a stock solution. The Selleck dilution calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2 ( Input Output )
* When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / COA (available online).
Molecular Weight Calculator
Enter the chemical formula of a compound to calculate its molar mass and elemental composition:
Tip: Chemical formula is case sensitive. C10H16N2O2 c10h16n2o2
Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
Molarity Calculator
Clinical Trial Information
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
---|---|---|---|---|---|---|
NCT04121195 | Recruiting | Drug: Dose escalation | HIV/AIDS|Tuberculosis | University of Liverpool|European and Developing Countries Clinical Trials Partnership (EDCTP)|Joint Clinical Research Centre Kampala Uganda|University of Cape Town Cape Town South Africa|Infectious Diseases Institute Makerere University College of Health Sciences Kampala Uganda|University of Turin Turin Italy | October 30 2020 | Phase 2|Phase 3 |
NCT04335123 | Completed | Drug: Losartan | COVID-19 | University of Kansas Medical Center | April 4 2020 | Phase 1 |
NCT04307693 | Terminated | Drug: Lopinavir/ritonavir|Drug: Hydroxychloroquine sulfate | COVID-19 | Asan Medical Center | March 11 2020 | Phase 2 |
Tech Support
Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.
Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.