research use only

Shh Antibody [L19M13]

Catalog No.: F4223

    Application: Reactivity:
    • F4223-wb
      Lane 1: HT29, Lane 2: PC12

    Experiment Essentials

    WB
    Recommended wet transfer conditions: 200 mA, 60 min,Recommended to use 0.22 μm PVDF membrane.

    Usage Information

    Dilution
    1:1000
    Application
    WB
    Reactivity
    Human, Rat
    Source
    Rabbit Monoclonal Antibody
    Storage Buffer
    PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN3
    Storage (from the date of receipt)
    -20°C (avoid freeze-thaw cycles), 2 years
    Predicted MW
    19 kDa, 45 kDa (precursor)
    Positive Control GH3 cell
    Negative Control

    Exprimental Methods

    WB
    Experimental Protocol:
     
    Sample preparation
    1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
    2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
    5. Remove a small volume of lysate to determine the protein concentration;
    6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
     
    Electrophoretic separation
    1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 10%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
    2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
     
    Transfer membrane
    1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
    2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
    3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
    4. The protein was electrotransferred to PVDF membrane. ( 0.22 µm PVDF membrane is recommended )Reference Table for Selecting PVDF Membrane Pore Size Specifications
    Recommended conditions for wet transfer: 200 mA, 60 min.
    ( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
     
    Block
    1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
    2. Incubate the film in the blocking solution for 1 hour at room temperature;
    3. Wash the film with TBST for 3 times, 5 minutes each time.
     
    Antibody incubation
    1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
    2. Wash the film with TBST 3 times, 5 minutes each time;
    3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
    4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
     
    Antibody staining
    1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
    2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

    Datasheet & SDS

    Biological Description

    Specificity
    Shh Antibody [L19M13] detects endogenous levels of total Shh protein.
    Subcellular Location
    Cell membrane, Endoplasmic reticulum, Golgi apparatus, Membrane, Secreted
    Uniprot ID
    Q15465
    Clone
    L19M13
    Synonym(s)
    Sonic hedgehog protein; SHH; HHG-1; Shh unprocessed N-terminal signaling and C-terminal autoprocessing domains (ShhNC); Sonic hedgehog protein N-product (ShhN); Shh N-terminal processed signaling domains (ShhNp)
    Background
    Sonic Hedgehog (Shh) is a secreted signaling protein belonging to the Hedgehog family, essential for embryonic development and tissue patterning. It is initially synthesized as a 45 kDa precursor that undergoes autocatalytic cleavage to produce a 19 kDa N-terminal signaling domain (Shh-N) and a 25 kDa C-terminal domain responsible for cholesterol modification of Shh-N, which anchors the protein to cell membranes and regulates its spatial distribution. Shh-N is further modified by palmitoylation at the N-terminus, dramatically increasing its signaling potency. Shh-N contains a zinc-binding site critical for protein interactions. Shh binds to the 12-transmembrane receptor Patched (Ptch), releasing inhibition on Smoothened (Smo), which triggers intracellular signaling cascades resulting in activation of GLI transcription factors and regulation of gene expression essential for cell differentiation, proliferation, and tissue patterning. Shh is vital in spinal cord formation, limb development, oligodendrocyte differentiation, and astrocyte function. Dysregulation of Shh signaling is associated with birth defects, cancers, and neurodegenerative diseases.
    References
    • https://pubmed.ncbi.nlm.nih.gov/12782757/
    • https://pubmed.ncbi.nlm.nih.gov/18794343/

    Tech Support

    Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

    Handling Instructions

    Tel: +1-832-582-8158 Ext:3
    If you have any other enquiries, please leave a message.

    * Indicates a Required Field

    Please enter your name.
    Please enter your email. Please enter a valid email address.
    Please write something to us.