Ketorolac

Catalog No.S1646 Batch:S164603

Print

Technical Data

Formula

C15H13N1O3

Molecular Weight 255.27 CAS No. 74103-06-3
Solubility (25°C)* In vitro DMSO 51 mg/mL (199.78 mM)
Ethanol 51 mg/mL (199.78 mM)
Water Insoluble
* <1 mg/ml means slightly soluble or insoluble.
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
* Room temperature shipping (Stability testing shows this product can be shipped without any cooling measures.)

Preparing Stock Solutions

Biological Activity

Description Ketorolac is a non-selective COX inhibitor of COX-1 and COX-2 with IC50 of 1.23 μM and 3.50 μM, respectively.
Targets
COX-1 (human) [1] COX-2 (human) [1]
1.23 μM 3.50 μM
In vitro (R, S)-, (S)-, and (R)-Ketorolac inhibit both isoforms of COX in recombinant rat and human enzyme systems, and similar as inhibitors of rat COX (rCOX) and human COX (hCOX) under the conditions used. (R, S)-Ketorolac inhibits rat COX-1, rat COX-2, human COX-1 and human COX-2 with IC50 of 0.27 μM, 2.06 μM, 1.23 μM and 3.50 μM, respectively. The (S) enantiomer of Ketorolac with IC50 of 0.10 μM for rat COX-1 is approximately twice as potent as the racemate, whereas the (R)-enantiomer with IC50 of > 100 μM is virtually without activity. [1] Ketorolac shows inhibition of eicosanoid formation in HEL cells (COX-1) and LPS-stimulated Mono Mac 6 cells (COX-2) with IC50 of 0.025 μM and 0.039 μM, respectively, but does not significantly inhibit NO accumulation in supernatants of LPS-stimulated RAW 264.7 cells up to 300 μM. [2] Ketorolac significantly inhibits thymidine incorporation of human osteoblasts (hOBs) upon 24 hours treatment in a dose-dependent manner, and inhibits proliferation and arrests cell cycle at G0/G1 phase in hOBs. [3]
In vivo (R, S)-Ketorolac is significantly more potent than indomethacin or diclofenac sodium in tests of acetic acid-induced writhing, carrageenan-induced paw hyperalgesia, and carrageenan-induced edema formation in rats, with ID50 of 0.24, 0.29 and 0.08 mg/kg, respectively. [1] Ketorolac produces significant inhibition of COX-1 activity and gastric PG synthesis with doses of ≥1 mg/kg inhibiting COX-1 activity by 95% and gastric PG synthesis by >88%. Ketorolac does not significantly affect COX-2 activity at doses of ≤3 mg/kg, but at doses of 10 and 30 mg/kg, Ketorolac produces significant inhibition of COX-2 activity by 75% and 91%, respectively. Ketorolac causes gastric damage in rats only at doses that inhibits both COX-1 and COX-2, or when given with a COX-2 inhibitor. [4]
Features A COX-1 preferential inhibitor among currently marked nonsteroidal anti-inflammatory drugs (NSAIDs).

Protocol (from reference)

Kinase Assay:[1]
  • Inhibition of Prostaglandin Formation

    Recombinant COX-1 and COX-2 from rat (rCOX) and human (hCOX) expressed in a baculovirus system are purified and reconstituted with 2 mM phenol and 1 μM hematin. Then the cyclooxygenase activity is measured using a radiometric assay, and the specific activity of the final enzyme preparations used is between 20,000 and 35,000 units. Ketorolac (2 -15 μL) are diluted in DMSO and preincubated with the appropriate recombinant COX (3 -15 ng) at a final concentration of 0.01 to 1000 μM in a reaction mixture (150 μL) containing 50 mM Tris-HCl buffer (pH 7.9), 2 mM EDTA, 10% glycerol, 2 mM phenol, and 1 μM hematin for 10 minutes. The reaction is initiated by addition of [14C]arachidonic acid (50–60 mCi/mmol in a final concentration of 20 μM) and is terminated 45 seconds later by the addition of 100 μL of 0.2 N HCl and 750 μL of distilled water. The total reaction volume is then applied to a 1 mL C18 Sep-pak column that has previously been washed with 2 mL of methanol followed by 5 mL of deionized water. Oxygenated products are eluted with 3 mL of a mixture of acetonitrile/water/acetic acid (50:50:0.1, v/v/v) and quantified by liquid scintillation spectroscopy.

Cell Assay:[3]
  • Cell lines

    Primary human osteoblasts cell lines

  • Concentrations

    Dissolved in DMSO, final concentration ~0.1 mM

  • Incubation Time

    24 hours

  • Method

    Human osteoblasts cells are exposed to Ketorolac for 24 hours. Thymidine incorporation is assessed by the TopCount Microplate Scintillation and Luminescence Counters through adding [3H]-thymidine to cultures 4 hours prior to harvesting. Cell cycle distribution is determined by using propidium iodide in flow cytometer, and cell apoptosis or necrosis is detected using the Annexin V-FITC Apoptosis Detection Kit.

Animal Study:[4]
  • Animal Models

    Male Wistar rats

  • Dosages

    0.3-30 mg/kg

  • Administration

    Take orally

Selleck's Ketorolac has been cited by 2 publications

Postoperative Administration of Ketorolac Averts Morphine-Induced Angiogenesis and Metastasis in Triple-Negative Breast Cancer [ Life Sci, 2020, 15;251:117604] PubMed: 32243929
Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner [ J Virol, 2020, 6;94(2):e01679-19] PubMed: 31619563

RETURN POLICY
Selleck Chemical’s Unconditional Return Policy ensures a smooth online shopping experience for our customers. If you are in any way unsatisfied with your purchase, you may return any item(s) within 7 days of receiving it. In the event of product quality issues, either protocol related or product related problems, you may return any item(s) within 365 days from the original purchase date. Please follow the instructions below when returning products.

SHIPPING AND STORAGE
Selleck products are transported at room temperature. If you receive the product at room temperature, please rest assured, the Selleck Quality Inspection Department has conducted experiments to verify that the normal temperature placement of one month will not affect the biological activity of powder products. After collecting, please store the product according to the requirements described in the datasheet. Most Selleck products are stable under the recommended conditions.

NOT FOR HUMAN, VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.