Sorafenib

Catalog No.S7397 Batch:S739706

Print

Technical Data

Formula

C21H16ClF3N4O3

Molecular Weight 464.82 CAS No. 284461-73-0
Solubility (25°C)* In vitro DMSO 92 mg/mL (197.92 mM)
Water Insoluble
Ethanol Insoluble
In vivo (Add solvents to the product individually and in order)
Homogeneous suspension
CMC-NA
≥5mg/ml Taking the 1 mL working solution as an example, add 5 mg of this product to 1 ml of CMC-Na solution, mix evenly to obtain a homogeneous suspension with a final concentration of 5 mg/ml.
* <1 mg/ml means slightly soluble or insoluble.
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.
* Room temperature shipping (Stability testing shows this product can be shipped without any cooling measures.)

Preparing Stock Solutions

Biological Activity

Description Sorafenib is a multikinase inhibitor of Raf-1 and B-Raf with IC50 of 6 nM and 22 nM in cell-free assays, respectively. Sorafenib inhibits VEGFR-2, VEGFR-3, PDGFR-β, Flt-3 and c-KIT with IC50 of 90 nM, 20 nM, 57 nM, 59 nM and 68 nM, respectively. Sorafenib induces autophagy and apoptosis and activates ferroptosis with anti-tumor activity.
Targets
Raf-1 [1]
(Cell-free assay)
mVEGFR2(Flk1) [1]
(Cell-free assay)
mVEGFR3 [1]
(Cell-free assay)
B-Raf [1]
(Cell-free assay)
B-Raf (V599E) [1]
(Cell-free assay)
View More
6 nM 15 nM 20 nM 22 nM 38 nM
In vitro Sorafenib inhibits both wild-type and V599E mutant B-Raf activity with IC50 of 22 nM and 38 nM, respectively. Sorafenib also potently inhibits mVEGFR2 (Flk-1), mVEGFR3, mPDGFRβ, Flt3, and c-Kit with IC50 of 15 nM, 20 nM, 57 nM, 58 nM, and 68 nM, respectively. Sorafenib weakly inhibits FGFR-1 with IC50 of 580 nM. Sorafenib tosylate is not active against ERK-1, MEK-1, EGFR, HER-2, IGFR-1, c-Met, PKB, PKA, cdk1/cyclinB, PKCα, PKCγ, and pim-1. Sorafenib markedly inhibits VEGFR2 phosphorylation in NIH 3T3 cells with IC50 of 30 nM, and Flt-3 phosphorylation in HEK-293 cells with IC50 of 20 nM. Sorafenib potently blocks MEK 1/2 and ERK 1/2 phosphorylation in most cell lines but not in A549 or H460 cells, while having no effect on inhibition of the PKB pathway. Sorafenib inhibits the proliferation of HAoSMC and MDA-MB-231 cells with IC50 of 0.28 μM and 2.6 μM, respectively. [1] In addition to inhibition of the RAF/MEK/ERK signaling pathway, Sorafenib significantly inhibits the phosphorylation of eIF4E and down-regulates Mcl-1 levels in hepatocellular carcinoma (HCC) cells in a MEK/ERK-independent manner. Sorafenib inhibits the proliferation of PLC/PRF/5 and HepG2 cells with IC50 of 6.3 μM and 4.5 μM, respectively, and leads to the significant induction of apoptosis. [2]
In vivo Oral administration of Sorafenib (~60 mg/kg) demonstrates broad spectrum, dose-dependent anti-tumor activity against a variety of human tumor xenograft models including MDA-MB-231, Colo-205, HT-29, DLD-1, NCI-H460, and A549, with no evidence of toxicity. In association with the anti-tumor efficacy, Sorafenib treatment potently inhibits MEK 1/2 phosphorylation and pERK 1/2 levels in HT-29 and MDA-MB-231 xenografts but not in Colo-205 xenografts, and significantly suppresses tumor microvessel area (MVA) and microvessel density (MVD) in MDA MB-231, HT-29 and Colo-205 tumor xenografts. [1] Sorafenib treatment produces dose-dependent growth inhibition of PLC/PRF/5 tumor xenografts in SCID mice with TGIs of 49% and 78% at 10 mg/kg and 30 mg/kg, respectively, consistent with the inhibition of ERK and eIF4E phosphorylation, reduction of the microvessel area, and induction of tumor cell apoptosis. [2] Sorafenib sensitizes bax-/- cells to TRAIL in a dose-dependent manner, through a mechanism involving down-regulating NF-κB mediated Mcl-1 and cIAP2 expression. Combining Sorafenib (30-60 mg/kg) with TRAIL (5 mg/kg) show dramatic efficacy in TRAIL-resistant HCT116 bax-/- and HT29 tumor xenografts. [3]

Protocol (from reference)

Kinase Assay:

[1]

  • Biochemical assays

    Recombinant baculoviruses expressing Raf-1 (residues 305–648) and B-Raf (residues 409–765) are purified as fusion proteins. Full-length human MEK-1 is generated by PCR and purified as a fusion protein from Escherichia coli lysates. Sorafenib tosylate is added to a mixture of Raf-1 (80 ng), or B-Raf (80 ng) with MEK-1 (1 μg) in assay buffer [20 mM Tris (pH 8.2), 100 mM NaCl, 5 mM MgCl2, and 0.15% β-mercaptoethanol] at a final concentration of 1% DMSO. The Raf kinase assay (final volume of 50 μL) is initiated by adding 25 μL of 10 μM γ[33P]ATP (400 Ci/mol) and incubated at 32 °C for 25 minutes. Phosphorylated MEK-1 is harvested by filtration onto a phosphocellulose mat, and 1% phosphoric acid is used to wash away unbound radioactivity. After drying by microwave heating, a β-plate counter is used to quantify filter-bound radioactivity. Human VEGFR2 (KDR) kinase domain is expressed and purified from Sf9 lysates. Time-resolved fluorescence energy transfer assays for VEGFR2 are performed in 96-well opaque plates in the time-resolved fluorescence energy transfer format. Final reaction conditions are as follows: 1 to 10 μM ATP, 25 nM poly GT-biotin, 2 nM Europium-labeled phospho (p)-Tyr antibody (PY20), 10 nM APC, 1 to 7 nM cytoplasmic kinase domain in final concentrations of 1% DMSO, 50 mM HEPES (pH 7.5), 10 mM MgCl2, 0.1 mM EDTA, 0.015% Brij-35, 0.1 mg/mL BSA, and 0.1% β-mercaptoethanol. Reaction volumes are 100 μL and are initiated by addition of enzyme. Plates are read at both 615 and 665 nM on a Perkin-Elmer VictorV Multilabel counter at ~1.5 to 2.0 hours after reaction initiation. Signal is calculated as a ratio: (665 nm/615 nM) × 10,000 for each well. For IC50 generation, Sorafenib tosylate is added before the enzyme initiation. A 50-fold stock plate is made with Sorafenib tosylate serially diluted 1:3 in a 50% DMSO/50% distilled water solution. Final Sorafenib tosylate concentrations range from 10 μM to 4.56 nM in 1% DMSO.

Cell Assay:

[1]

  • Cell lines

    MDA-MB-231, and HAoSMC

  • Concentrations

    Dissolved in DMSO, final concentrations ~10 μM

  • Incubation Time

    72 hours

  • Method

    Cells are exposed to increasing concentrations of Sorafenib tosylate for 72 hours. Cell number is quantitated using the Cell TiterGlo ATP Luminescent assay kit. This assay measures the number of viable cells per well by measurement of luminescent signal based on amount of cellular ATP.

Animal Study:

[1]

  • Animal Models

    Female NCr-nu/nu mice implanted s.c. with MDA-MB-231, Colo-205, HT-29, H460, or A549 cells

  • Dosages

    ~60 mg/kg

  • Administration

    Orally once daily

References

  • https://pubmed.ncbi.nlm.nih.gov/15466206/
  • https://pubmed.ncbi.nlm.nih.gov/17178882/
  • https://pubmed.ncbi.nlm.nih.gov/17613437/

Customer Product Validation

Involvement of EV linc-VLDLR in tumor cell responses to chemotherapy. Cells were incubated with sorafenib, camptothecin, or doxorubicin. EVs were obtained after 24 hours, and qRT-PCR was performed for linc-VLDLR. The bars represent the mean ?SEM of the increase in cell viability from 3 independent studies. *, P < 0.05.

Data from [ Mol Cancer Res , 2014 , 12(10), 1377-87 ]

Effects of sorafenib or sunitinib on LicA-induced cell death, ER stress responses, PLCc1, Ca2+, and ROS in HepG2 cells. HepG2 cells were pretreated with sorafenib or sunitinib for 1 h, then treated with LicA or TG for 1 h (for P-eIF2a and P-PLCc1) or 24 h (for CHOP, ATF6a(p90), and caspase-4). The cell lysates were subjected to Western blot analyses using antibodies against CHOP, ATF6a(p90), caspase-4(C), P-eIF2a, and b-actin.

Data from [ Apoptosis , 2014 , 19(4), 682-97 ]

(A) were exposed to 200 uM gentamicin for various time periods. Immunoreactivity for phosphorylated JNK (green) and c-Jun (blue) in hair cells increased in a time-dependent manner. B. Hair cells from explants pre-treated with 500 nM sorafenib displayed a near complete inhibition of JNK activation at all time points analyzed.

Data from [ J Neurosci , 2013 , 33(7), 3079-93 ]

Sorafenib and PX-866 interact to suppress tumor growth in vivo. Mice were PO administered vehicle diluent, sorafenib (25 mg/kg), PX-866 (2 mg/kg), or the drug combination QD for 3 days. Animals were monitored daily and tumor volume determined every fifth day. Tumors from animals were isolated at day 15 and fixed, sectioned (10-um), and stained against proliferation (Ki67 staining), phospho-ERK1/2 and phospho-AKT staining, the levels of tumor cell apoptosis/cleaved caspase 3, as well as with H&E and 4′,6-diamidino-2-phenylindole (DAPI).

Data from [ Mol Pharmacol , 2013 , 84(4), 562-71 ]

Selleck's Sorafenib has been cited by 612 publications

Sorafenib enhanced the function of myeloid-derived suppressor cells in hepatocellular carcinoma by facilitating PPARα-mediated fatty acid oxidation [ Mol Cancer, 2025, 24(1):34] PubMed: 39876004
S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism [ Nat Commun, 2025, 16(1):509] PubMed: 39779666
PIP5K1A Suppresses Ferroptosis and Induces Sorafenib Resistance by Stabilizing NRF2 in Hepatocellular Carcinoma [ Adv Sci (Weinh), 2025, 12(30):e04372] PubMed: 40405713
FLT3 inhibitors induce p53 instability, driven by STAT5/MDM2/p53 competitive interactions in acute myeloid leukemia [ Cancer Lett, 2025, 611:217446] PubMed: 39756787
In vivo optoacoustic imaging of endothelin receptor expression and treatment response in the hypoxic tumor microenvironment [ Eur J Nucl Med Mol Imaging, 2025, 10.1007/s00259-025-07494-7] PubMed: 40802092
Matrix stiffness regulates glucose-6-phosphate dehydrogenase expression to mediate sorafenib resistance in hepatocellular carcinoma through the ITGB1-PI3K/AKT pathway [ Cell Death Dis, 2025, 16(1):538] PubMed: 40685383
Inhibition of Wnt/β-catenin increases anti-tumor activity by synergizing with sorafenib in hepatocellular carcinoma [ Cell Death Dis, 2025, 16(1):466] PubMed: 40593458
Targeting PTGDS Promotes ferroptosis in peripheral T cell lymphoma through regulating HMOX1-mediated iron metabolism [ Br J Cancer, 2025, 132(4):384-400] PubMed: 39706989
Targeting the MYC oncogene with a selective bi-steric mTORC1 inhibitor elicits tumor regression in MYC-driven cancers [ Cell Chem Biol, 2025, 32(8):994-1012.e11] PubMed: 40803322
The Radiosensitizing Effect of Tumor-Derived Microparticles Co-Loaded with Sorafenib and Gold Nanoparticles on Hepatocellular Carcinoma [ Int J Nanomedicine, 2025, 20:5489-5508] PubMed: 40321799

RETURN POLICY
Selleck Chemical’s Unconditional Return Policy ensures a smooth online shopping experience for our customers. If you are in any way unsatisfied with your purchase, you may return any item(s) within 7 days of receiving it. In the event of product quality issues, either protocol related or product related problems, you may return any item(s) within 365 days from the original purchase date. Please follow the instructions below when returning products.

SHIPPING AND STORAGE
Selleck products are transported at room temperature. If you receive the product at room temperature, please rest assured, the Selleck Quality Inspection Department has conducted experiments to verify that the normal temperature placement of one month will not affect the biological activity of powder products. After collecting, please store the product according to the requirements described in the datasheet. Most Selleck products are stable under the recommended conditions.

NOT FOR HUMAN, VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.