ORC6 Antibody [E10G21]

Catalog No.: F6758

Print

Biological Description

Specificity ORC6 Antibody [E10G21] detects endogenous levels of total ORC6 protein.
Background ORC6 (Origin Recognition Complex Subunit 6) is an essential component of the heterohexameric Origin Recognition Complex that binds replication origins in G1 phase, recruiting Cdc6 and Cdt1 to assemble pre-replicative complexes and license chromosomal origins for accurate S-phase firing, while stabilizing MCM2-7 helicase association with chromatin to ensure complete genome duplication. ORC6 localizes to replication forks as an accessory factor in mismatch repair, directly recruiting MutSα (MSH2-MSH6) and MutLα (MLH1-PMS2) to facilitate DNA lesion recognition, MutLα activation, and ATR-mediated damage signaling, thereby preserving genomic integrity during replication stress. It features an N-terminal TFIIB-like helical repeat region containing DNA-binding residues Q129, R137, and K168, and a C-terminal cytokinesis domain that interacts with septins at the midbody to physically separate daughter cells and prevent binucleation. Mutations in ORC6 disrupt pre-RC assembly, causing Meier-Gorlin syndrome, a disorder marked by profound developmental defects including microcephaly, primordial dwarfism, and kneecap hypoplasia due to replication licensing failure. ORC6 overexpression hyperactivates replication origins, driving uncontrolled proliferation, migration, and invasion with poor prognosis in non-small cell lung cancer, hepatocellular carcinoma, renal cell carcinoma, and breast cancer, as well as emerging NFκB-mediated inflammatory roles in immune dysregulation.

Usage Information

Application WB, IP Dilution
WB IP
1:1000 1:50
Reactivity Human, Mouse, Rat, Hamster, Monkey
Source Rat Monoclonal Antibody MW 28 kDa
Storage Buffer PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN3
Storage
(from the date of receipt)
-20°C (avoid freeze-thaw cycles), 2 years
WB
Experimental Protocol:
 
Sample preparation
1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/Nuclear Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/Nuclear Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/Nuclear Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
5. Remove a small volume of lysate to determine the protein concentration;
6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
 
Electrophoretic separation
1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 10%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
 
Transfer membrane
1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
Recommended conditions for wet transfer: 200 mA, 60 min.
( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
 
Block
1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
2. Incubate the film in the blocking solution for 1 hour at room temperature;
3. Wash the film with TBST for 3 times, 5 minutes each time.
 
Antibody incubation
1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
2. Wash the film with TBST 3 times, 5 minutes each time;
3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
 
Antibody staining
1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

References

  • https://pubmed.ncbi.nlm.nih.gov/32986843/
  • https://pubmed.ncbi.nlm.nih.gov/19541634/

Application Data

WB

Validated by Selleck

  • F6758-wb
    Lane 1: Hela, Lane 2: HUVEC, Lane 3: NIH/3T3, Lane 4: C6