Category

Archives

Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes

This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity.