Growth factor dependence of the proliferation and survival of cultured lacrimal gland epithelial cells isolated from late-embryonic mice

Epidermal growth factor (EGF) and hepatocyte growth factor (HGF) regulate the growth and morphogenesis of various exocrine glands with branched morphologies. Their roles in lacrimal gland (LG) development remain unknown, but fibroblast growth factor (FGF) 10 is crucial for early LG organogenesis. To clarify the roles of EGF, HGF, and FGF10 in LG development, LG epithelial cells were isolated from late-embryonic and neonatal mice; cultured; and treated with EGF, HGF, or FGF10 and their respective receptor tyrosine kinase (RTK) inhibitors AG1478, PHA665752, or SU5402. EGF and HGF increased the number of viable cells by enhancing DNA synthesis, FGF10 and SU5402 showed no such effect, and RTK inhibitors exhibited the opposite effect. EGF and HGF receptors were immunostained in cultured late-embryonic LG epithelial cells and terminal LG acini from late embryos and adult mice. HGF was detected in neonatal LG epithelial cell culture supernatants by western blotting. In the absence of EGF and HGF RTK inhibitors, growth factor addition increased the number of viable cells and suppressed cell death. However, when one RTK was inhibited and a growth factor targeting an intact RTK was added, the number of dead cells increased as the number of viable cells increased. No cells survived when both RTKs were inhibited. In explant cultures of LGs from embryos, AG1478 or PHA665752 decreased the number of Ki67-positive proliferating epithelial cells in terminal acini. Thus, EGF and HGF may function in a cooperative autocrine manner, supporting cell proliferation and survival during LG development in late-embryonic and neonatal mice.

Related Products

Cat.No. Product Name Information
S7667 SU5402 SU5402 is a potent multi-targeted receptor tyrosine kinase inhibitor with IC50 of 20 nM, 30 nM, and 510 nM for VEGFR2, FGFR1, and PDGF-Rβ, respectively.

Related Targets