Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells

Our previous research showed that endosulfan triggers the extrinsic coagulation pathway by damaging endothelial cells and causes hypercoagulation of blood. To identify the mechanism of endosulfan-impaired endothelial cells, we treated human umbilical vein endothelial cells (HUVECs) with different concentrations of endosulfan, with and without an inhibitor for Notch, N-[N-(3, 5-difluorophenacetyl)-1-alanyl]S-Phenylglycinet-butylester (DAPT, 20 μM), or a reactive oxygen species (ROS) scavenger, N-Acetyl-l-cysteine (NAC, 3 mM), for 24 h. The results showed that endosulfan could inhibit cell viability/proliferation by increasing the release of lactate dehydrogenase (LDH), arresting the cell cycle in both S and G2/M phases, and inducing apoptosis in HUVECs. We also found that endosulfan can damage microfilaments, microtubules, and nuclei; arrest mitosis; remarkably increase the expressions of Dll4, Notch1, Cleaved-Notch1, Jagged1, Notch4, Hes1, and p21; and significantly induce ROS and malondialdehyde production in HUVECs. The presence of DAPT antagonized the above changes of cycle arrest, proliferation inhibition, and expressions of Dll4, Notch1, Cleaved-Notch1, Hes1, and p21 caused by endosulfan; however, NAC could attenuate LDH release; ROS and malondialdehyde production; apoptosis; and the expression levels of Dll4, Notch1, Cleaved-Notch1, Notch4, and Hes1 induced by endosulfan. These results demonstrated that endosulfan inhibited proliferation through the Notch signaling pathway as a result of oxidative stress. In addition, endosulfan can damage the cytoskeleton and block mitosis, which may add another layer of toxic effects on endothelial cells.

Related Products

Cat.No. Product Name Information Publications Customer Product Validation
S2215 DAPT (GSI-IX) DAPT (GSI-IX, LY-374973) is a novel γ-secretase inhibitor, which inhibits Aβ production with IC50 of 20 nM in HEK 293 cells. DAPT enhances the apoptosis of human tongue carcinoma cells and regulates autophagy. (297) (9)

Related Targets