Shipping services continue despite COVID-19 outbreak ! Click here to view COVID-19 related products



17β-estradiol-induced growth of triple-negative breast cancer cells is prevented by the reduction of GPER expression after treatment with gefitinib

Triple-negative breast cancers (TNBCs) are neither susceptible to endocrine therapy due to a lack of estrogen receptor α expression nor trastuzumab. TNBCs frequently overexpress epidermal growth factor receptor (EGFR) and membrane bound estrogen receptor, GPER. To a certain extent the growth of TNBCs is stimulated by 17β-estradiol via GPER. We analyzed whether inhibition of EGFR by gefitinib reduces the expression of GPER and subsequent signal transduction in TNBC cells. Dependence of proliferation on 17β-estradiol was determined using Alamar Blue assay. Expression of GPR30 and activation of c-src, EGFR and cAMP-responsive element binding (CREB) protein by 17β-estradiol was analyzed by western blotting. Expression of c-fos, cyclin D1 and aromatase was determined using RT-PCR. Gefitinib reduced GPER expression concentration‑ and time‑dependently. In HCC70 cells, GPER expression was reduced to 15±11% (p<0.05) after treatment with 200 nM gefitinib for four days, and in HCC1806 cells GPER expression was reduced to 39±5% (p<0.01) of the control. 17β-estradiol significantly increased the percentage of HCC1806 cells within 7 days to 145±29% of the control (HCC70, 110±8%). This increase in cell growth was completely prevented in both TNBC cell lines after GPR30 expression was downregulated by treatment with 200 nM gefitinib. In HCC1806 cells, activation of c-src was increased by 17β-estradiol to 350±50% (p<0.01), and gefitinib reduced src activation to 110%. Similar results were obtained in the HCC70 cells. Phosphorylation of EGFR increased to 240±40% (p<0.05) in the HCC1806 cells treated with 17β-estradiol (HCC70, 147±25%). Gefitinib completely prevented this activation. Phosphorylation of CREB and induction of c-fos, cyclin D1 and aromatase expression by 17β-estradiol were all prevented by gefitinib. These experiments conclusively show that reduction of GPER expression is a promising therapeutic approach for TNBC.

Related Products

Cat.No. Product Name Information Publications Customer Product Validation
S1025 Gefitinib (ZD1839) Gefitinib (ZD-1839, Iressa) is an EGFR inhibitor for Tyr1173, Tyr992, Tyr1173 and Tyr992 in the NR6wtEGFR and NR6W cells with IC50 of 37 nM, 37nM, 26 nM and 57 nM, respectively. Gefitinib promotes autophagy and apoptosis of lung cancer cells via blockade of the PI3K/AKT/mTOR pathway. (484) (14)

Related Targets