Tiplaxtinin (PAI-039)

Tiplaxtinin(PAI-039) is an orally efficacious and selective plasminogen activator inhibitor-1 (PAI-1) inhibitor with IC50 of 2.7 μM.

Tiplaxtinin (PAI-039) Chemical Structure

Tiplaxtinin (PAI-039) Chemical Structure

CAS: 393105-53-8

Selleck's Tiplaxtinin (PAI-039) has been cited by 13 Publications

1 Customer Review

Purity & Quality Control

Batch: Purity: 99.21%
99.21

Tiplaxtinin (PAI-039) Related Products

Choose Selective PAI-1 Inhibitors

Biological Activity

Description Tiplaxtinin(PAI-039) is an orally efficacious and selective plasminogen activator inhibitor-1 (PAI-1) inhibitor with IC50 of 2.7 μM.
Targets
PAI-1 [1]
2.7 μM
In vitro
In vitro In a panel of human bladder cell lines, PAI-1 results in the reduction of cellular proliferation, cell adhesion, and colony formation, and the induction of apoptosis and anoikis. [4]
Kinase Assay Direct PAI-I in vitro activity assays
The chromogenic assay is initiated by the addition of tiplaxtinin (10 – 100 µM final concentration, maximum DMSO concentration of 0.2%) to recombinant human PAI-1 (140 nM in pH 6.6 buffer). After a 15 minute incubation at 25°C, 70 nM of recombinant human t-PA is added, and the combination of tiplaxtinin, PAI-1 and tPA are incubated for an additional 30 minutes. After the second incubation, Spectrozyme tPA, is added and absorbance read at 405 nm at 0 and 60 minutes. Relative PAI-1 inhibitory activity is equal to the residual tPA activity in the tiplaxtinin / PAI-1 treatment. Control treatments include the complete inhibition of tPA by PAI-1 at the molar ratio employed (2:1), and the absence of any effect of the tiplaxtinin on t-PA alone. The immunofunctional assay is based upon the non-SDS dissociable interaction between tPA and active PAI-1. Assay plates are coated with 100 µl of a solution of t-PA (10 µg/ml in TBS), and kept at 4 °C overnight. Tiplaxtinin is dissolved in DMSO and diluted to a final concentration of 1-100 µM as described above. Tiplaxtinin is then incubated with human PAI-1 (50 ng/ml) for 15 minutes, and an aliquot of this solution added to the t-PA-coated plate for 1 h. The solution is aspirated from the plate, which is then washed with a buffer consisting of 0.05% Tween 20 and 0.1% BSA in TBS. This assay detects only active inhibitory PAI-1 (not latent or substrate) bound to the plate, and is quantitated using a monoclonal antibody against human PAI-1 (MA33B8). A 1000X dilution of MA33B8 is added to the plate and incubated at for one hour, aspirated and washed. A secondary antibody consisting of goat anti-mouse IgG (H+L)-AP alkaline phosphatase conjugate is added, incubated for one hour, aspirated and washed. A 100 µl aliquot of alkaline phosphatase solution is added, followed by determination of absorbance at 405 nm 60 minutes later. The quantitation of residual active PAI-1 bound to t-PA at varying concentrations of tiplaxtinin is used to determine the IC50 by fitting the results to a logistic dose-response program, with the IC50 defined as the concentration of compound required to achieve 50% inhibition of PAI-1 activity. The assay sensitivity is 5 ng/ml of human PAI-1 as determined from a standard curve ranging from 0-100 ng/ml of human PAI-1.
Cell Research Cell lines T24, UM-UC-14, UROtsa, and HeLa cells
Concentrations ~50 μM
Incubation Time 24 h
Method Briefly, cell lines, T24, UM-UC-14, UROtsa, and HeLa cells are plated in 96-well dishes in triplicate at 1 ?103 cells per well and allowed to adhere for 24 hours. Subsequently, tiplaxtinin is added to the wells and allowed to incubate at the indicated concentrations. Cellular proliferation is determined by CellTiter-Glo Luminescent Cell Viability Assay according to manufacturer's instructions at 24 hours, and IC50 of tiplaxtinin is determined in Graphpad Prism. Luminescence was measured using a FLUOstar OPTIMA Reader.
In Vivo
In vivo In a rat carotid thrombosis model, Tiplaxtinin (1 mg/kg, p.o.) increases time to occlusion and prevents the carotid blood flow reduction. [1] In C57BL/6J mice, (1 mg/g chow) attenuates Ang II-induced aortic remodeling. [2] In untreated type 1 diabetic mice, Tiplaxtinin (p.o.) restores skeletal muscle regeneration. [3] In athymic mice bearing human cancer cell line T24 and HeLa xenografts, Tiplaxtinin (1 mg/kg, p.o.) reduces tumor xenograft growth, associated with a reduction in tumor angiogenesis, a reduction in cellular proliferation, and an increase in apoptosis. [4]
Animal Research Animal Models Rat with carotid thrombosis
Dosages 1 mg/kg
Administration p.o.

Chemical Information & Solubility

Molecular Weight 439.38 Formula

C24H16F3NO4

CAS No. 393105-53-8 SDF Download Tiplaxtinin (PAI-039) SDF
Smiles C1=CC=C(C=C1)CN2C=C(C3=C2C=CC(=C3)C4=CC=C(C=C4)OC(F)(F)F)C(=O)C(=O)O
Storage (From the date of receipt)

In vitro
Batch:

DMSO : 88 mg/mL ( (200.28 mM); Moisture-absorbing DMSO reduces solubility. Please use fresh DMSO.)

Ethanol : 22 mg/mL

Water : Insoluble


Molecular Weight Calculator

In vivo
Batch:

Add solvents to the product individually and in order.


In vivo Formulation Calculator

Preparing Stock Solutions

Molarity Calculator

Mass Concentration Volume Molecular Weight

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.

* Indicates a Required Field

Please enter your name.
Please enter your email. Please enter a valid email address.
Please write something to us.
Tags: buy Tiplaxtinin (PAI-039) | Tiplaxtinin (PAI-039) supplier | purchase Tiplaxtinin (PAI-039) | Tiplaxtinin (PAI-039) cost | Tiplaxtinin (PAI-039) manufacturer | order Tiplaxtinin (PAI-039) | Tiplaxtinin (PAI-039) distributor